具有任务大小限制的异构计算机网络的实际性能模型的数据划分

骈文研究 Pub Date : 2004-07-05 DOI:10.1109/ISPDC.2004.17
Alexey L. Lastovetsky, Ravi Reddy
{"title":"具有任务大小限制的异构计算机网络的实际性能模型的数据划分","authors":"Alexey L. Lastovetsky, Ravi Reddy","doi":"10.1109/ISPDC.2004.17","DOIUrl":null,"url":null,"abstract":"The paper presents a performance model that can be used to optimally schedule arbitrary tasks on a network of heterogeneous computers when there is an upper bound on the size of the task that can be solved by each computer. We formulate a problem of partitioning of an n-element set over p heterogeneous processors using this advanced performance model and give its efficient solution of the complexity O(p/sup 3/ /spl times/ log/sub 2/ n).","PeriodicalId":62714,"journal":{"name":"骈文研究","volume":"19 1","pages":"133-140"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Data partitioning with a realistic performance model of networks of heterogeneous computers with task size limits\",\"authors\":\"Alexey L. Lastovetsky, Ravi Reddy\",\"doi\":\"10.1109/ISPDC.2004.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a performance model that can be used to optimally schedule arbitrary tasks on a network of heterogeneous computers when there is an upper bound on the size of the task that can be solved by each computer. We formulate a problem of partitioning of an n-element set over p heterogeneous processors using this advanced performance model and give its efficient solution of the complexity O(p/sup 3/ /spl times/ log/sub 2/ n).\",\"PeriodicalId\":62714,\"journal\":{\"name\":\"骈文研究\",\"volume\":\"19 1\",\"pages\":\"133-140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"骈文研究\",\"FirstCategoryId\":\"1092\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPDC.2004.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"骈文研究","FirstCategoryId":"1092","ListUrlMain":"https://doi.org/10.1109/ISPDC.2004.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文提出了一个性能模型,该模型可用于在异构计算机网络中,当每台计算机可解决的任务大小存在上界时,对任意任务进行最优调度。我们利用这一先进的性能模型构造了一个n元素集在p个异构处理器上的划分问题,并给出了复杂度为O(p/sup 3/ / sp1乘以/ log/sub 2/ n)的有效解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data partitioning with a realistic performance model of networks of heterogeneous computers with task size limits
The paper presents a performance model that can be used to optimally schedule arbitrary tasks on a network of heterogeneous computers when there is an upper bound on the size of the task that can be solved by each computer. We formulate a problem of partitioning of an n-element set over p heterogeneous processors using this advanced performance model and give its efficient solution of the complexity O(p/sup 3/ /spl times/ log/sub 2/ n).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
104
期刊最新文献
A Java CPU calibration tool for load balancing in distributed applications Task scheduling: considering the processor involvement in communication Extending Maple to the grid: design and implementation Bridging Secure WebCom and European DataGrid security for multiple VOs over multiple grids GridAdmin: decentralising grid administration using trust management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1