使用MinHash LSH搜索Web数据

B. Rao, Erkang Zhu
{"title":"使用MinHash LSH搜索Web数据","authors":"B. Rao, Erkang Zhu","doi":"10.1145/2882903.2914838","DOIUrl":null,"url":null,"abstract":"In this extended abstract, we explore the use of MinHash Locality Sensitive Hashing (MinHash LSH) to address the problem of indexing and searching Web data. We discuss a statistical tuning strategy of MinHash LSH, and experimentally evaluate the accuracy and performance, compared with inverted index. In addition, we describe an on-line demo for the index with real Web data.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Searching Web Data using MinHash LSH\",\"authors\":\"B. Rao, Erkang Zhu\",\"doi\":\"10.1145/2882903.2914838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this extended abstract, we explore the use of MinHash Locality Sensitive Hashing (MinHash LSH) to address the problem of indexing and searching Web data. We discuss a statistical tuning strategy of MinHash LSH, and experimentally evaluate the accuracy and performance, compared with inverted index. In addition, we describe an on-line demo for the index with real Web data.\",\"PeriodicalId\":20483,\"journal\":{\"name\":\"Proceedings of the 2016 International Conference on Management of Data\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2882903.2914838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2914838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在这篇扩展摘要中,我们探讨了使用MinHash Locality Sensitive hash (MinHash LSH)来解决索引和搜索Web数据的问题。讨论了一种MinHash LSH的统计调优策略,并与倒排索引进行了比较,对其精度和性能进行了实验评估。此外,我们还描述了一个使用真实Web数据的索引的在线演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Searching Web Data using MinHash LSH
In this extended abstract, we explore the use of MinHash Locality Sensitive Hashing (MinHash LSH) to address the problem of indexing and searching Web data. We discuss a statistical tuning strategy of MinHash LSH, and experimentally evaluate the accuracy and performance, compared with inverted index. In addition, we describe an on-line demo for the index with real Web data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Experimental Comparison of Thirteen Relational Equi-Joins in Main Memory Rheem: Enabling Multi-Platform Task Execution Wander Join: Online Aggregation for Joins Graph Summarization for Geo-correlated Trends Detection in Social Networks Emma in Action: Declarative Dataflows for Scalable Data Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1