基于深度学习的新能源专利技术点生成研究

IF 4.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal on Semantic Web and Information Systems Pub Date : 2023-07-31 DOI:10.4018/ijswis.327354
Haixiang Yang, Xindong You, Xueqiang Lv, Ge Xu
{"title":"基于深度学习的新能源专利技术点生成研究","authors":"Haixiang Yang, Xindong You, Xueqiang Lv, Ge Xu","doi":"10.4018/ijswis.327354","DOIUrl":null,"url":null,"abstract":"Effective extraction of patent technology points in new energy fields is profitable, which motivates technological innovation and facilitates patent transformation and application. However, since patent data exists the ununiform distribution of technology points information, long length of term, and long sentences, technology point extraction faces the dilemmas of poor readability and logic confusion. To mitigate these problems, the article proposes a method to generate patent technology points called IGPTP—a two-stage strategy, which fuses the advantage of extractive and generative ways. IGPTP utilizes the RoBERTa+CNN model to obtain the key sentences of text and takes the output as input of UNILM (unified pre-trained language model). Simultaneously, it takes a multi-strategies integration technique to enhance the quality of patent technology points by combining the copy mechanism and external knowledge guidance model. Substantial experimental results manifest that IGPTP outperforms the current mainstream models, which can generate more coherent and richer text.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"19 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the Generation of Patented Technology Points in New Energy Based on Deep Learning\",\"authors\":\"Haixiang Yang, Xindong You, Xueqiang Lv, Ge Xu\",\"doi\":\"10.4018/ijswis.327354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective extraction of patent technology points in new energy fields is profitable, which motivates technological innovation and facilitates patent transformation and application. However, since patent data exists the ununiform distribution of technology points information, long length of term, and long sentences, technology point extraction faces the dilemmas of poor readability and logic confusion. To mitigate these problems, the article proposes a method to generate patent technology points called IGPTP—a two-stage strategy, which fuses the advantage of extractive and generative ways. IGPTP utilizes the RoBERTa+CNN model to obtain the key sentences of text and takes the output as input of UNILM (unified pre-trained language model). Simultaneously, it takes a multi-strategies integration technique to enhance the quality of patent technology points by combining the copy mechanism and external knowledge guidance model. Substantial experimental results manifest that IGPTP outperforms the current mainstream models, which can generate more coherent and richer text.\",\"PeriodicalId\":54934,\"journal\":{\"name\":\"International Journal on Semantic Web and Information Systems\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Semantic Web and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijswis.327354\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.327354","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

新能源领域专利技术点的有效提取是有益的,可以激励技术创新,促进专利转化和应用。然而,由于专利数据存在技术点信息分布不均匀、术语长、句子长等问题,使得技术点提取面临可读性差、逻辑混乱的困境。为了缓解这些问题,本文提出了一种称为igptp的专利技术点生成方法,这是一种两阶段策略,融合了提取和生成方法的优势。IGPTP利用RoBERTa+CNN模型获取文本的关键句子,并将输出作为UNILM(统一预训练语言模型)的输入。同时,采用多策略集成技术,将复制机制与外部知识引导模型相结合,提高专利技术点的质量。大量实验结果表明,IGPTP优于当前主流模型,可以生成更连贯、更丰富的文本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on the Generation of Patented Technology Points in New Energy Based on Deep Learning
Effective extraction of patent technology points in new energy fields is profitable, which motivates technological innovation and facilitates patent transformation and application. However, since patent data exists the ununiform distribution of technology points information, long length of term, and long sentences, technology point extraction faces the dilemmas of poor readability and logic confusion. To mitigate these problems, the article proposes a method to generate patent technology points called IGPTP—a two-stage strategy, which fuses the advantage of extractive and generative ways. IGPTP utilizes the RoBERTa+CNN model to obtain the key sentences of text and takes the output as input of UNILM (unified pre-trained language model). Simultaneously, it takes a multi-strategies integration technique to enhance the quality of patent technology points by combining the copy mechanism and external knowledge guidance model. Substantial experimental results manifest that IGPTP outperforms the current mainstream models, which can generate more coherent and richer text.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
12.50%
发文量
51
审稿时长
20 months
期刊介绍: The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.
期刊最新文献
A Web Semantic-Based Text Analysis Approach for Enhancing Named Entity Recognition Using PU-Learning and Negative Sampling Blockchain-Based Lightweight Authentication Mechanisms for Industrial Internet of Things and Information Systems A Network Intrusion Detection Method for Information Systems Using Federated Learning and Improved Transformer Semantic Trajectory Planning for Industrial Robotics Digital Copyright Management Mechanism Based on Dynamic Encryption for Multiplatform Browsers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1