gaas基1.3 ~ 1.6µm激光器的应变平衡GaAs1−xBix/GaNyAs1−y w型量子阱

Zoe C. M. Davidson, J. Rorison, S. Sweeney, C. Broderick
{"title":"gaas基1.3 ~ 1.6µm激光器的应变平衡GaAs1−xBix/GaNyAs1−y w型量子阱","authors":"Zoe C. M. Davidson, J. Rorison, S. Sweeney, C. Broderick","doi":"10.1109/NUSOD52207.2021.9541434","DOIUrl":null,"url":null,"abstract":"Highly-mismatched alloys constitute a promising approach to extend the operational range of GaAs-based quantum well (QW) lasers to telecom wavelengths. This is challenging using type-I QWs due to the difficulty to incorporate sufficient N or Bi via epitaxial growth. To overcome this, we investigate a novel class of strain-compensated type-II QWs combining electron-confining, tensile strained GaN<inf>y</inf>As<inf>1−y</inf> and hole-confining, compressively strained GaAs<inf>1−x</inf>Bi<inf>x</inf> layers. We systematically analyse the optoelectronic properties of W-type GaAs<inf>1−x</inf>Bi<inf>x</inf>/GaN<inf>y</inf>As<inf>1−y</inf> QWs, and identify paths to optimise their threshold characteristics. Solving the multi-band k•p Schrödinger equation self-consistently with Poisson’s equation highlights the importance of electrostatic confinement in determining the optical and differential gain of these QWs. Our calculations demonstrate that GaAs<inf>1−x</inf>Bi<inf>x</inf>/GaN<inf>y</inf>As<inf>1−y</inf> QWs offer broad scope for band structure engineering, with W-type structures presenting the possibility to combine high long-wavelength gain with the intrinsically low non-radiative Auger recombination rates of type-II QWs.","PeriodicalId":6780,"journal":{"name":"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","volume":"4 1","pages":"5-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Strain-balanced GaAs1−xBix/GaNyAs1−y W-type quantum wells for GaAs-based 1.3–1.6 µm lasers\",\"authors\":\"Zoe C. M. Davidson, J. Rorison, S. Sweeney, C. Broderick\",\"doi\":\"10.1109/NUSOD52207.2021.9541434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Highly-mismatched alloys constitute a promising approach to extend the operational range of GaAs-based quantum well (QW) lasers to telecom wavelengths. This is challenging using type-I QWs due to the difficulty to incorporate sufficient N or Bi via epitaxial growth. To overcome this, we investigate a novel class of strain-compensated type-II QWs combining electron-confining, tensile strained GaN<inf>y</inf>As<inf>1−y</inf> and hole-confining, compressively strained GaAs<inf>1−x</inf>Bi<inf>x</inf> layers. We systematically analyse the optoelectronic properties of W-type GaAs<inf>1−x</inf>Bi<inf>x</inf>/GaN<inf>y</inf>As<inf>1−y</inf> QWs, and identify paths to optimise their threshold characteristics. Solving the multi-band k•p Schrödinger equation self-consistently with Poisson’s equation highlights the importance of electrostatic confinement in determining the optical and differential gain of these QWs. Our calculations demonstrate that GaAs<inf>1−x</inf>Bi<inf>x</inf>/GaN<inf>y</inf>As<inf>1−y</inf> QWs offer broad scope for band structure engineering, with W-type structures presenting the possibility to combine high long-wavelength gain with the intrinsically low non-radiative Auger recombination rates of type-II QWs.\",\"PeriodicalId\":6780,\"journal\":{\"name\":\"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"volume\":\"4 1\",\"pages\":\"5-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NUSOD52207.2021.9541434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD52207.2021.9541434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高度不匹配合金是将gaas基量子阱(QW)激光器的工作范围扩展到电信波长的一种有前途的方法。由于难以通过外延生长纳入足够的N或Bi,因此使用i型量子阱具有挑战性。为了克服这一问题,我们研究了一类新的应变补偿型ii型量子阱,该量子阱结合了电子约束、拉伸应变的GaNyAs1−y和空穴约束、压缩应变的GaAs1−xBix层。我们系统地分析了w型GaAs1−xBix/GaNyAs1−y量子阱的光电特性,并确定了优化其阈值特性的途径。用泊松方程自一致地求解多波段k•p Schrödinger方程,突出了静电约束在确定这些量子阱的光学增益和微分增益方面的重要性。我们的计算表明,GaAs1−xBix/GaNyAs1−y量子波为波段结构工程提供了广阔的空间,其中w型结构提供了将高长波增益与ii型量子波固有的低非辐射俄钻复合率结合起来的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strain-balanced GaAs1−xBix/GaNyAs1−y W-type quantum wells for GaAs-based 1.3–1.6 µm lasers
Highly-mismatched alloys constitute a promising approach to extend the operational range of GaAs-based quantum well (QW) lasers to telecom wavelengths. This is challenging using type-I QWs due to the difficulty to incorporate sufficient N or Bi via epitaxial growth. To overcome this, we investigate a novel class of strain-compensated type-II QWs combining electron-confining, tensile strained GaNyAs1−y and hole-confining, compressively strained GaAs1−xBix layers. We systematically analyse the optoelectronic properties of W-type GaAs1−xBix/GaNyAs1−y QWs, and identify paths to optimise their threshold characteristics. Solving the multi-band k•p Schrödinger equation self-consistently with Poisson’s equation highlights the importance of electrostatic confinement in determining the optical and differential gain of these QWs. Our calculations demonstrate that GaAs1−xBix/GaNyAs1−y QWs offer broad scope for band structure engineering, with W-type structures presenting the possibility to combine high long-wavelength gain with the intrinsically low non-radiative Auger recombination rates of type-II QWs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influences of Random Alloy Fluctuation to the Efficiency of µLED and Optimization of Efficiency with Vertical Type Contact Understanding the photon-photon resonance of DBR lasers using mode expansion method Modeling Efficiency of InAs-Based Near-Field Thermophotovoltaic Devices Multimode Dynamics and Frequency Comb Generation in Quantum Cascade Lasers Modeling Material Susceptibility in Silicon for Four-Wave Mixing Based Nonlinear Optics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1