{"title":"半导体薄膜外延单层石墨烯的热电输运性质","authors":"Junhua Gao, Xiaofeng Zhao, Zhengfu Cheng, L. Tian","doi":"10.1080/10667857.2023.2214776","DOIUrl":null,"url":null,"abstract":"ABSTRACT Epitaxial graphene on semiconductor films has potential for various applications due to its thermoelectric properties. We investigated factors affecting its thermo power using a solid-state physics approach, considering the interaction between the substrate and graphene, and exploring the effects of chemical potential, temperature, anharmonic vibrations of atoms, phonon-drag, and film thickness. Our results show that anharmonic effects significantly enhance the thermopower caused by electrons, especially at higher temperatures. Additionally, we observed an increase in total thermopower due to phonon-drag, although it has negligible effects at or above room temperature. We found that the thermopower on size-quantized semiconductor films is significantly higher than on metal conductor films and bulk semiconductor substrates. Decreasing the film thickness further increases the thermo power, providing an effective way to enhance the thermo electric properties of epitaxial graphene. Our findings contribute to a better understanding of the thermoelectric properties of epitaxial graphene on semiconductor films and offer valuable insights for future applications.","PeriodicalId":18270,"journal":{"name":"Materials Technology","volume":"4 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermoelectric transport properties of semiconductor film-based epitaxial monolayer graphene\",\"authors\":\"Junhua Gao, Xiaofeng Zhao, Zhengfu Cheng, L. Tian\",\"doi\":\"10.1080/10667857.2023.2214776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Epitaxial graphene on semiconductor films has potential for various applications due to its thermoelectric properties. We investigated factors affecting its thermo power using a solid-state physics approach, considering the interaction between the substrate and graphene, and exploring the effects of chemical potential, temperature, anharmonic vibrations of atoms, phonon-drag, and film thickness. Our results show that anharmonic effects significantly enhance the thermopower caused by electrons, especially at higher temperatures. Additionally, we observed an increase in total thermopower due to phonon-drag, although it has negligible effects at or above room temperature. We found that the thermopower on size-quantized semiconductor films is significantly higher than on metal conductor films and bulk semiconductor substrates. Decreasing the film thickness further increases the thermo power, providing an effective way to enhance the thermo electric properties of epitaxial graphene. Our findings contribute to a better understanding of the thermoelectric properties of epitaxial graphene on semiconductor films and offer valuable insights for future applications.\",\"PeriodicalId\":18270,\"journal\":{\"name\":\"Materials Technology\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/10667857.2023.2214776\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/10667857.2023.2214776","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermoelectric transport properties of semiconductor film-based epitaxial monolayer graphene
ABSTRACT Epitaxial graphene on semiconductor films has potential for various applications due to its thermoelectric properties. We investigated factors affecting its thermo power using a solid-state physics approach, considering the interaction between the substrate and graphene, and exploring the effects of chemical potential, temperature, anharmonic vibrations of atoms, phonon-drag, and film thickness. Our results show that anharmonic effects significantly enhance the thermopower caused by electrons, especially at higher temperatures. Additionally, we observed an increase in total thermopower due to phonon-drag, although it has negligible effects at or above room temperature. We found that the thermopower on size-quantized semiconductor films is significantly higher than on metal conductor films and bulk semiconductor substrates. Decreasing the film thickness further increases the thermo power, providing an effective way to enhance the thermo electric properties of epitaxial graphene. Our findings contribute to a better understanding of the thermoelectric properties of epitaxial graphene on semiconductor films and offer valuable insights for future applications.
期刊介绍:
Materials Technology: Advanced Performance Materials provides an international medium for the communication of progress in the field of functional materials (advanced materials in which composition, structure and surface are functionalised to confer specific, applications-oriented properties). The focus is on materials for biomedical, electronic, photonic and energy applications. Contributions should address the physical, chemical, or engineering sciences that underpin the design and application of these materials. The scientific and engineering aspects may include processing and structural characterisation from the micro- to nanoscale to achieve specific functionality.