{"title":"风险融资top-n推荐的实证研究","authors":"T. Stone, Weinan Zhang, Xiaoxue Zhao","doi":"10.1145/2505515.2507882","DOIUrl":null,"url":null,"abstract":"This paper concerns the task of top-N investment opportunity recommendation in the domain of venture finance. By venture finance, specifically, we are interested in the investment activity of venture capital (VC) firms and their investment partners. We have access to a dataset of recorded venture financings (i.e., investments) by VCs and their investment partners in private US companies. This research was undertaken in partnership with Correlation Ventures, a venture capital firm who are pioneering the use of predictive analytics in order to better inform investment decision making. This paper undertakes a detailed empirical study and data analysis then demonstrates the efficacy of recommender systems in this novel application domain.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"An empirical study of top-n recommendation for venture finance\",\"authors\":\"T. Stone, Weinan Zhang, Xiaoxue Zhao\",\"doi\":\"10.1145/2505515.2507882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns the task of top-N investment opportunity recommendation in the domain of venture finance. By venture finance, specifically, we are interested in the investment activity of venture capital (VC) firms and their investment partners. We have access to a dataset of recorded venture financings (i.e., investments) by VCs and their investment partners in private US companies. This research was undertaken in partnership with Correlation Ventures, a venture capital firm who are pioneering the use of predictive analytics in order to better inform investment decision making. This paper undertakes a detailed empirical study and data analysis then demonstrates the efficacy of recommender systems in this novel application domain.\",\"PeriodicalId\":20528,\"journal\":{\"name\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2505515.2507882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2507882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An empirical study of top-n recommendation for venture finance
This paper concerns the task of top-N investment opportunity recommendation in the domain of venture finance. By venture finance, specifically, we are interested in the investment activity of venture capital (VC) firms and their investment partners. We have access to a dataset of recorded venture financings (i.e., investments) by VCs and their investment partners in private US companies. This research was undertaken in partnership with Correlation Ventures, a venture capital firm who are pioneering the use of predictive analytics in order to better inform investment decision making. This paper undertakes a detailed empirical study and data analysis then demonstrates the efficacy of recommender systems in this novel application domain.