{"title":"电力/地网络的变化感知电迁移分析","authors":"Di-An Li, M. Marek-Sadowska","doi":"10.1109/ICCAD.2011.6105387","DOIUrl":null,"url":null,"abstract":"Due to shrinking wire dimensions, higher current density, and process variations, electromigration (EM) has become a major reliability problem. The existing backend design flows use the maximum allowed current density as the only practical guidance to prevent EM. There is a need for tools capable of performing comprehensive EM analyses. In this paper, we first explain why current density alone does not determine wire's susceptibility to EM. We introduce our variation-aware EM analysis tool, VEMA, for power/ground networks, which are typically the EM-critical parts of a chip. Our tool considers two types of variations: circuit-level and wire geometry-level. VEMA reports distributions of wire lifetimes for circuit-level variations. Compared to existing EM analyzer SysRel, VEMA filters out EM-immortal wires more efficiently and provides detailed feedback for EM violation corrections. VEMA also provides information of geometry-level tolerance for EM-mortal wires.","PeriodicalId":6357,"journal":{"name":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Variation-aware electromigration analysis of power/ground networks\",\"authors\":\"Di-An Li, M. Marek-Sadowska\",\"doi\":\"10.1109/ICCAD.2011.6105387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to shrinking wire dimensions, higher current density, and process variations, electromigration (EM) has become a major reliability problem. The existing backend design flows use the maximum allowed current density as the only practical guidance to prevent EM. There is a need for tools capable of performing comprehensive EM analyses. In this paper, we first explain why current density alone does not determine wire's susceptibility to EM. We introduce our variation-aware EM analysis tool, VEMA, for power/ground networks, which are typically the EM-critical parts of a chip. Our tool considers two types of variations: circuit-level and wire geometry-level. VEMA reports distributions of wire lifetimes for circuit-level variations. Compared to existing EM analyzer SysRel, VEMA filters out EM-immortal wires more efficiently and provides detailed feedback for EM violation corrections. VEMA also provides information of geometry-level tolerance for EM-mortal wires.\",\"PeriodicalId\":6357,\"journal\":{\"name\":\"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2011.6105387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2011.6105387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Variation-aware electromigration analysis of power/ground networks
Due to shrinking wire dimensions, higher current density, and process variations, electromigration (EM) has become a major reliability problem. The existing backend design flows use the maximum allowed current density as the only practical guidance to prevent EM. There is a need for tools capable of performing comprehensive EM analyses. In this paper, we first explain why current density alone does not determine wire's susceptibility to EM. We introduce our variation-aware EM analysis tool, VEMA, for power/ground networks, which are typically the EM-critical parts of a chip. Our tool considers two types of variations: circuit-level and wire geometry-level. VEMA reports distributions of wire lifetimes for circuit-level variations. Compared to existing EM analyzer SysRel, VEMA filters out EM-immortal wires more efficiently and provides detailed feedback for EM violation corrections. VEMA also provides information of geometry-level tolerance for EM-mortal wires.