L-CMP:基于自动学习的参数化验证工具

Jialun Cao, Yongjian Li, Jun Pang
{"title":"L-CMP:基于自动学习的参数化验证工具","authors":"Jialun Cao, Yongjian Li, Jun Pang","doi":"10.1145/3238147.3240487","DOIUrl":null,"url":null,"abstract":"This demo introduces L-CMP, an automatic learning-based parameterized verification tool. It can verify parameterized protocols by combining machine learning and model checking techniques. Given a parameterized protocol, L-CMP learns a set of auxiliary invariants and implements verification of the protocol using the invariants automatically. In particular, the learned auxiliary invariants are straightforward and readable. The experimental results show that L-CMP can successfully verify a number of cache coherence protocols, including the industrial-scale FLASH protocol. The video presentation of L-CMP is available at https://youtu.be/6Dl2HiiiS4E, and the source code can be downloaded at https://github.com/ArabelaTso/Learning-Based-ParaVerifer.","PeriodicalId":6622,"journal":{"name":"2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"26 1","pages":"892-895"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"L-CMP: An Automatic Learning-Based Parameterized Verification Tool\",\"authors\":\"Jialun Cao, Yongjian Li, Jun Pang\",\"doi\":\"10.1145/3238147.3240487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This demo introduces L-CMP, an automatic learning-based parameterized verification tool. It can verify parameterized protocols by combining machine learning and model checking techniques. Given a parameterized protocol, L-CMP learns a set of auxiliary invariants and implements verification of the protocol using the invariants automatically. In particular, the learned auxiliary invariants are straightforward and readable. The experimental results show that L-CMP can successfully verify a number of cache coherence protocols, including the industrial-scale FLASH protocol. The video presentation of L-CMP is available at https://youtu.be/6Dl2HiiiS4E, and the source code can be downloaded at https://github.com/ArabelaTso/Learning-Based-ParaVerifer.\",\"PeriodicalId\":6622,\"journal\":{\"name\":\"2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"26 1\",\"pages\":\"892-895\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3238147.3240487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3238147.3240487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这个演示介绍了L-CMP,一个基于自动学习的参数化验证工具。它结合机器学习和模型检查技术对参数化协议进行验证。给定一个参数化协议,L-CMP学习一组辅助不变量,并使用这些不变量自动实现协议的验证。特别是,学习的辅助不变量是直接和可读的。实验结果表明,L-CMP可以成功验证多种缓存一致性协议,包括工业规模的FLASH协议。L-CMP的视频演示可以在https://youtu.be/6Dl2HiiiS4E上获得,源代码可以在https://github.com/ArabelaTso/Learning-Based-ParaVerifer上下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
L-CMP: An Automatic Learning-Based Parameterized Verification Tool
This demo introduces L-CMP, an automatic learning-based parameterized verification tool. It can verify parameterized protocols by combining machine learning and model checking techniques. Given a parameterized protocol, L-CMP learns a set of auxiliary invariants and implements verification of the protocol using the invariants automatically. In particular, the learned auxiliary invariants are straightforward and readable. The experimental results show that L-CMP can successfully verify a number of cache coherence protocols, including the industrial-scale FLASH protocol. The video presentation of L-CMP is available at https://youtu.be/6Dl2HiiiS4E, and the source code can be downloaded at https://github.com/ArabelaTso/Learning-Based-ParaVerifer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatically Testing Implementations of Numerical Abstract Domains Self-Protection of Android Systems from Inter-component Communication Attacks Characterizing the Natural Language Descriptions in Software Logging Statements DroidMate-2: A Platform for Android Test Generation CPA-SymExec: Efficient Symbolic Execution in CPAchecker
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1