{"title":"具有非均匀数据自动直方图型隶属函数的基因表达信息学","authors":"Akito Daiba, S. Ito, Tsutomu Takeuchi, M. Yohda","doi":"10.1273/CBIJ.10.13","DOIUrl":null,"url":null,"abstract":"The non-uniformity of gene expression data is one of the factors that make gene expression analysis difficult. Gene expression data often do not follow a normal distribution but rather various distributions within each group. Thus, it is impossible to apply basic statistical techniques such as the t-test. In this study, we have developed an analysis method for gene expression data obtained by microarrays using a fuzzy logic algorithm with original membership functions. The method automatically evaluates the data from a histogram of gene expression information for a patient group. Using this method, we predicted the efficacy of an anti-TNF-α treatment for rheumatoid arthritis. We created a prediction model for the effects of 14 weeks of anti-TNF-α treatment based on the gene expression data from the peripheral blood of rheumatoid arthritis patients before the treatment. The model had a predictive success of 89% in the model-establishing data group, 94% in the training group, and 89% in the validation group. The results suggest that the method presented here could be an extremely effective tool for gene expression analysis.","PeriodicalId":40659,"journal":{"name":"Chem-Bio Informatics Journal","volume":"62 1","pages":"13-23"},"PeriodicalIF":0.4000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene expression informatics with an automatic histogram-type membership function for non-uniform data\",\"authors\":\"Akito Daiba, S. Ito, Tsutomu Takeuchi, M. Yohda\",\"doi\":\"10.1273/CBIJ.10.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The non-uniformity of gene expression data is one of the factors that make gene expression analysis difficult. Gene expression data often do not follow a normal distribution but rather various distributions within each group. Thus, it is impossible to apply basic statistical techniques such as the t-test. In this study, we have developed an analysis method for gene expression data obtained by microarrays using a fuzzy logic algorithm with original membership functions. The method automatically evaluates the data from a histogram of gene expression information for a patient group. Using this method, we predicted the efficacy of an anti-TNF-α treatment for rheumatoid arthritis. We created a prediction model for the effects of 14 weeks of anti-TNF-α treatment based on the gene expression data from the peripheral blood of rheumatoid arthritis patients before the treatment. The model had a predictive success of 89% in the model-establishing data group, 94% in the training group, and 89% in the validation group. The results suggest that the method presented here could be an extremely effective tool for gene expression analysis.\",\"PeriodicalId\":40659,\"journal\":{\"name\":\"Chem-Bio Informatics Journal\",\"volume\":\"62 1\",\"pages\":\"13-23\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem-Bio Informatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1273/CBIJ.10.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem-Bio Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1273/CBIJ.10.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Gene expression informatics with an automatic histogram-type membership function for non-uniform data
The non-uniformity of gene expression data is one of the factors that make gene expression analysis difficult. Gene expression data often do not follow a normal distribution but rather various distributions within each group. Thus, it is impossible to apply basic statistical techniques such as the t-test. In this study, we have developed an analysis method for gene expression data obtained by microarrays using a fuzzy logic algorithm with original membership functions. The method automatically evaluates the data from a histogram of gene expression information for a patient group. Using this method, we predicted the efficacy of an anti-TNF-α treatment for rheumatoid arthritis. We created a prediction model for the effects of 14 weeks of anti-TNF-α treatment based on the gene expression data from the peripheral blood of rheumatoid arthritis patients before the treatment. The model had a predictive success of 89% in the model-establishing data group, 94% in the training group, and 89% in the validation group. The results suggest that the method presented here could be an extremely effective tool for gene expression analysis.