{"title":"高最大能积Sm - Fe - N块状磁体的制备","authors":"R. Matsunami, M. Matsuura, N. Tezuka, S. Sugimoto","doi":"10.3379/msjmag.2005r003","DOIUrl":null,"url":null,"abstract":"In an effort to increase the maximum energy product ((BH)max) and coercivity (HcJ) of Zn-bonded Sm−Fe−N magnets, we developed a process for preparing Sm−Fe−N and Zn powders with low oxygen contents and subjected them to spark plasma sintering. The oxygen content, remanence, and coercivity of the Sm−Fe−N powder were 0.22 wt%, 151 A·m2·kg−1, and 0.72 MA·m−1, respectively. The oxygen content and secondary average particle size of the Zn powder were 0.083 wt% and 0.93 μm, respectively. The magnetic properties of the Zn-free Sm−Fe−N magnets included an HcJ of 0.86 MA·m−1 and a (BH)max of 188 kJ·m−3, while the Zn-bonded (10 wt%) Sm−Fe−N magnets exhibited excellent magnetic properties with a (BH)max of 200 kJ·m−3 and an HcJ of 1.28 MA·m−1. Compared with previous studies, this is the high (BH)max observed for a Sm−Fe−N bulk magnet simultaneously displaying a high HcJ. The (BH)max of the Zn-bonded magnets was greater than that of the Zn-free magnets owing to the higher relative density of the former. Therefore, Zn is an effective binder for increasing not only the coercivity but also the density of Sm−Fe−N magnets. Consequently, the procedure reported herein permits the successful preparation of high-performance Sm−Fe−N bulk magnets.","PeriodicalId":36791,"journal":{"name":"Journal of the Magnetics Society of Japan","volume":"9 1","pages":"64-69"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Preparation of Sm−Fe−N Bulk Magnets with High Maximum Energy Products\",\"authors\":\"R. Matsunami, M. Matsuura, N. Tezuka, S. Sugimoto\",\"doi\":\"10.3379/msjmag.2005r003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an effort to increase the maximum energy product ((BH)max) and coercivity (HcJ) of Zn-bonded Sm−Fe−N magnets, we developed a process for preparing Sm−Fe−N and Zn powders with low oxygen contents and subjected them to spark plasma sintering. The oxygen content, remanence, and coercivity of the Sm−Fe−N powder were 0.22 wt%, 151 A·m2·kg−1, and 0.72 MA·m−1, respectively. The oxygen content and secondary average particle size of the Zn powder were 0.083 wt% and 0.93 μm, respectively. The magnetic properties of the Zn-free Sm−Fe−N magnets included an HcJ of 0.86 MA·m−1 and a (BH)max of 188 kJ·m−3, while the Zn-bonded (10 wt%) Sm−Fe−N magnets exhibited excellent magnetic properties with a (BH)max of 200 kJ·m−3 and an HcJ of 1.28 MA·m−1. Compared with previous studies, this is the high (BH)max observed for a Sm−Fe−N bulk magnet simultaneously displaying a high HcJ. The (BH)max of the Zn-bonded magnets was greater than that of the Zn-free magnets owing to the higher relative density of the former. Therefore, Zn is an effective binder for increasing not only the coercivity but also the density of Sm−Fe−N magnets. Consequently, the procedure reported herein permits the successful preparation of high-performance Sm−Fe−N bulk magnets.\",\"PeriodicalId\":36791,\"journal\":{\"name\":\"Journal of the Magnetics Society of Japan\",\"volume\":\"9 1\",\"pages\":\"64-69\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Magnetics Society of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3379/msjmag.2005r003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Magnetics Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3379/msjmag.2005r003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 6
摘要
为了提高Zn键合Sm - Fe - N磁体的最大能量积(BH)max)和矫顽力(HcJ),我们开发了一种制备低氧含量Sm - Fe - N和Zn粉末的工艺,并对其进行火花等离子烧结。Sm - Fe - N粉末的氧含量、剩余物和矫顽力分别为0.22 wt%、151 A·m2·kg - 1和0.72 MA·m - 1。锌粉的氧含量为0.083 wt%,二次平均粒度为0.93 μm。无锌Sm - Fe - N磁体的HcJ值为0.86 MA·m−1,HcJ值为188 kJ·m−3,而含锌(10 wt%) Sm - Fe - N磁体的HcJ值为1.28 MA·m−1,HcJ值为200 kJ·m−3。与以前的研究相比,这是Sm - Fe - N体磁铁同时显示高HcJ的高(BH)max。由于锌结合磁体的相对密度较高,其(BH)max大于无锌磁体。因此,Zn是一种有效的粘结剂,不仅可以提高Sm - Fe - N磁体的矫顽力,还可以提高磁体的密度。因此,本文报道的方法允许成功制备高性能Sm−Fe−N块体磁体。
Preparation of Sm−Fe−N Bulk Magnets with High Maximum Energy Products
In an effort to increase the maximum energy product ((BH)max) and coercivity (HcJ) of Zn-bonded Sm−Fe−N magnets, we developed a process for preparing Sm−Fe−N and Zn powders with low oxygen contents and subjected them to spark plasma sintering. The oxygen content, remanence, and coercivity of the Sm−Fe−N powder were 0.22 wt%, 151 A·m2·kg−1, and 0.72 MA·m−1, respectively. The oxygen content and secondary average particle size of the Zn powder were 0.083 wt% and 0.93 μm, respectively. The magnetic properties of the Zn-free Sm−Fe−N magnets included an HcJ of 0.86 MA·m−1 and a (BH)max of 188 kJ·m−3, while the Zn-bonded (10 wt%) Sm−Fe−N magnets exhibited excellent magnetic properties with a (BH)max of 200 kJ·m−3 and an HcJ of 1.28 MA·m−1. Compared with previous studies, this is the high (BH)max observed for a Sm−Fe−N bulk magnet simultaneously displaying a high HcJ. The (BH)max of the Zn-bonded magnets was greater than that of the Zn-free magnets owing to the higher relative density of the former. Therefore, Zn is an effective binder for increasing not only the coercivity but also the density of Sm−Fe−N magnets. Consequently, the procedure reported herein permits the successful preparation of high-performance Sm−Fe−N bulk magnets.