机器学习在结构识别拓扑映射中的应用

Francisco B. de S. Rocha, Bruno Vicente Alves de Lima, R. Leal, Diego P. Rocha, Karoline de M. Farias, R. Rabêlo, A. M. Santana
{"title":"机器学习在结构识别拓扑映射中的应用","authors":"Francisco B. de S. Rocha, Bruno Vicente Alves de Lima, R. Leal, Diego P. Rocha, Karoline de M. Farias, R. Rabêlo, A. M. Santana","doi":"10.1109/SMC42975.2020.9283475","DOIUrl":null,"url":null,"abstract":"This paper presents a structural recognition system using machine learning algorithms (Multilayer Perceptron, Support Vector Machine and Random Forest) and the environment information to analyzes the feasibility of the use of machine learning methods for the construction of topological maps. The proposed method combines the recognized information from a given scene with a topological graph to create a map. This map can be used to plan high-level tasks of robotic navigation. The topological nodes are used to store semantic information, such as the robot’s poses, sensor data and scene characteristics. The machine learning algorithms classification of the structural information as either rooms, corridors or doors obtained a satisfactory performance. The structural recognition provided by classification presents accuracy greater than 97% and topological maps built efficiently of classification.","PeriodicalId":6718,"journal":{"name":"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","volume":"31 1","pages":"1872-1877"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Applied to Topological Mapping for Structure Recognition\",\"authors\":\"Francisco B. de S. Rocha, Bruno Vicente Alves de Lima, R. Leal, Diego P. Rocha, Karoline de M. Farias, R. Rabêlo, A. M. Santana\",\"doi\":\"10.1109/SMC42975.2020.9283475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a structural recognition system using machine learning algorithms (Multilayer Perceptron, Support Vector Machine and Random Forest) and the environment information to analyzes the feasibility of the use of machine learning methods for the construction of topological maps. The proposed method combines the recognized information from a given scene with a topological graph to create a map. This map can be used to plan high-level tasks of robotic navigation. The topological nodes are used to store semantic information, such as the robot’s poses, sensor data and scene characteristics. The machine learning algorithms classification of the structural information as either rooms, corridors or doors obtained a satisfactory performance. The structural recognition provided by classification presents accuracy greater than 97% and topological maps built efficiently of classification.\",\"PeriodicalId\":6718,\"journal\":{\"name\":\"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)\",\"volume\":\"31 1\",\"pages\":\"1872-1877\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMC42975.2020.9283475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMC42975.2020.9283475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个利用机器学习算法(多层感知机、支持向量机和随机森林)和环境信息的结构识别系统,分析了使用机器学习方法构建拓扑图的可行性。该方法将给定场景的识别信息与拓扑图相结合,生成地图。该地图可用于规划机器人导航的高级任务。拓扑节点用于存储语义信息,如机器人的姿势、传感器数据和场景特征。将结构信息分类为房间、走廊或门的机器学习算法取得了令人满意的效果。分类提供的结构识别准确率大于97%,分类有效地构建了拓扑地图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Applied to Topological Mapping for Structure Recognition
This paper presents a structural recognition system using machine learning algorithms (Multilayer Perceptron, Support Vector Machine and Random Forest) and the environment information to analyzes the feasibility of the use of machine learning methods for the construction of topological maps. The proposed method combines the recognized information from a given scene with a topological graph to create a map. This map can be used to plan high-level tasks of robotic navigation. The topological nodes are used to store semantic information, such as the robot’s poses, sensor data and scene characteristics. The machine learning algorithms classification of the structural information as either rooms, corridors or doors obtained a satisfactory performance. The structural recognition provided by classification presents accuracy greater than 97% and topological maps built efficiently of classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
At-the-Edge Data Processing for Low Latency High Throughput Machine Learning Algorithms Machine Learning for First Principles Calculations of Material Properties for Ferromagnetic Materials Mobility Aware Computation Offloading Model for Edge Computing Toward an Autonomous Workflow for Single Crystal Neutron Diffraction Virtual Infrastructure Twins: Software Testing Platforms for Computing-Instrument Ecosystems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1