在大规模生物网络中挖掘基于枢纽的蛋白质复合物

Zhijie Lin, Yan Chen, Shiwei Wu, Yun Xiong, Yangyong Zhu, Guangyong Zheng
{"title":"在大规模生物网络中挖掘基于枢纽的蛋白质复合物","authors":"Zhijie Lin, Yan Chen, Shiwei Wu, Yun Xiong, Yangyong Zhu, Guangyong Zheng","doi":"10.1109/BIBMW.2012.6470299","DOIUrl":null,"url":null,"abstract":"Advanced technologies are producing large-scale protein-protein interaction data at an ever increasing pace. Finding protein-protein interaction complexes from large PPI networks is a fundamental problem in bioinformatics. As a group of core proteins which interacts with other more proteins, hub proteins play a key role in protein complex and life activity. In this paper, we propose a novel topological model, HP*-complex, which defines the hub proteins of protein complex and extends to encompass the neighborhood of the hub proteins, for the initial structure of protein complexes. An algorithm based on the new topological model, called HPCMiner, is developed for identifying protein complexes from large PPI networks. The experiment results on real dataset show that our proposed algorithm detects many complexes having special biological significance. The results from a study on synthetic data sets demonstrate that the HPCMiner algorithm scales well with respect to data set size.","PeriodicalId":6392,"journal":{"name":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mining hub-based protein complexes in massive biological networks\",\"authors\":\"Zhijie Lin, Yan Chen, Shiwei Wu, Yun Xiong, Yangyong Zhu, Guangyong Zheng\",\"doi\":\"10.1109/BIBMW.2012.6470299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced technologies are producing large-scale protein-protein interaction data at an ever increasing pace. Finding protein-protein interaction complexes from large PPI networks is a fundamental problem in bioinformatics. As a group of core proteins which interacts with other more proteins, hub proteins play a key role in protein complex and life activity. In this paper, we propose a novel topological model, HP*-complex, which defines the hub proteins of protein complex and extends to encompass the neighborhood of the hub proteins, for the initial structure of protein complexes. An algorithm based on the new topological model, called HPCMiner, is developed for identifying protein complexes from large PPI networks. The experiment results on real dataset show that our proposed algorithm detects many complexes having special biological significance. The results from a study on synthetic data sets demonstrate that the HPCMiner algorithm scales well with respect to data set size.\",\"PeriodicalId\":6392,\"journal\":{\"name\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBMW.2012.6470299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2012.6470299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

先进的技术正在以越来越快的速度产生大规模的蛋白质-蛋白质相互作用数据。从大型PPI网络中寻找蛋白质-蛋白质相互作用复合物是生物信息学中的一个基本问题。枢纽蛋白作为一组与其他蛋白质相互作用的核心蛋白,在蛋白质复合体和生命活动中起着关键作用。本文提出了一种新的拓扑模型HP*-complex,它定义了蛋白质复合体的枢纽蛋白,并扩展到枢纽蛋白的邻域,作为蛋白质复合体的初始结构。一种基于新拓扑模型的算法,称为HPCMiner,被开发用于从大型PPI网络中识别蛋白质复合物。在真实数据集上的实验结果表明,我们提出的算法能够检测到许多具有特殊生物学意义的复合物。对合成数据集的研究结果表明,HPCMiner算法在数据集大小方面具有良好的可伸缩性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mining hub-based protein complexes in massive biological networks
Advanced technologies are producing large-scale protein-protein interaction data at an ever increasing pace. Finding protein-protein interaction complexes from large PPI networks is a fundamental problem in bioinformatics. As a group of core proteins which interacts with other more proteins, hub proteins play a key role in protein complex and life activity. In this paper, we propose a novel topological model, HP*-complex, which defines the hub proteins of protein complex and extends to encompass the neighborhood of the hub proteins, for the initial structure of protein complexes. An algorithm based on the new topological model, called HPCMiner, is developed for identifying protein complexes from large PPI networks. The experiment results on real dataset show that our proposed algorithm detects many complexes having special biological significance. The results from a study on synthetic data sets demonstrate that the HPCMiner algorithm scales well with respect to data set size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards comprehensive longitudinal healthcare data capture On the repetitive collection indexing problem Sampling low-energy protein-protein configurations with basin hopping The effect of measurement approach and noise level on gene selection stability Clinical research progress of treatment over Tourette syndrome with acup-mox therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1