一种新的知识状态表示与预测方法

Shreyansh P. Bhatt, Jinjin Zhao, Candace Thille, D. Zimmaro, Neelesh Gattani
{"title":"一种新的知识状态表示与预测方法","authors":"Shreyansh P. Bhatt, Jinjin Zhao, Candace Thille, D. Zimmaro, Neelesh Gattani","doi":"10.1145/3386527.3406745","DOIUrl":null,"url":null,"abstract":"Online learning systems with open navigation allow learners to select the next learning activity in order to achieve desired mastery. To help learners make an informed choice regarding the next learning activity, we propose to represent and communicate the learner's knowledge state as the average success rate in the course for each skill, rather than as the probability of correctly answering the next question. We first show that we can accurately estimate the proposed knowledge state. We then show that the proposed attention-based model to estimate the knowledge state requires fewer parameters, provides actionable information to the learners, and achieves equivalent or better accuracy compared to RNN (Recurrent Neural Network) based models.","PeriodicalId":20608,"journal":{"name":"Proceedings of the Seventh ACM Conference on Learning @ Scale","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Novel Approach for Knowledge State Representation and Prediction\",\"authors\":\"Shreyansh P. Bhatt, Jinjin Zhao, Candace Thille, D. Zimmaro, Neelesh Gattani\",\"doi\":\"10.1145/3386527.3406745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online learning systems with open navigation allow learners to select the next learning activity in order to achieve desired mastery. To help learners make an informed choice regarding the next learning activity, we propose to represent and communicate the learner's knowledge state as the average success rate in the course for each skill, rather than as the probability of correctly answering the next question. We first show that we can accurately estimate the proposed knowledge state. We then show that the proposed attention-based model to estimate the knowledge state requires fewer parameters, provides actionable information to the learners, and achieves equivalent or better accuracy compared to RNN (Recurrent Neural Network) based models.\",\"PeriodicalId\":20608,\"journal\":{\"name\":\"Proceedings of the Seventh ACM Conference on Learning @ Scale\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh ACM Conference on Learning @ Scale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3386527.3406745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3386527.3406745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

具有开放式导航的在线学习系统允许学习者选择下一个学习活动,以达到所需的掌握。为了帮助学习者对下一个学习活动做出明智的选择,我们建议将学习者的知识状态表示为每项技能在课程中的平均成功率,而不是正确回答下一个问题的概率。我们首先证明了我们可以准确地估计提出的知识状态。然后,我们证明了所提出的基于注意力的模型来估计知识状态需要更少的参数,为学习者提供可操作的信息,并且与基于RNN(递归神经网络)的模型相比,达到了同等或更好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Approach for Knowledge State Representation and Prediction
Online learning systems with open navigation allow learners to select the next learning activity in order to achieve desired mastery. To help learners make an informed choice regarding the next learning activity, we propose to represent and communicate the learner's knowledge state as the average success rate in the course for each skill, rather than as the probability of correctly answering the next question. We first show that we can accurately estimate the proposed knowledge state. We then show that the proposed attention-based model to estimate the knowledge state requires fewer parameters, provides actionable information to the learners, and achieves equivalent or better accuracy compared to RNN (Recurrent Neural Network) based models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trust, Sustainability and [email protected] L@S'22: Ninth ACM Conference on Learning @ Scale, New York City, NY, USA, June 1 - 3, 2022 L@S'21: Eighth ACM Conference on Learning @ Scale, Virtual Event, Germany, June 22-25, 2021 Leveraging Book Indexes for Automatic Extraction of Concepts in MOOCs Evaluating Bayesian Knowledge Tracing for Estimating Learner Proficiency and Guiding Learner Behavior
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1