利用怀俄明州大分水岭流域周围水系的地形图证据比较两种根本不同的区域地貌范式

E. Clausen
{"title":"利用怀俄明州大分水岭流域周围水系的地形图证据比较两种根本不同的区域地貌范式","authors":"E. Clausen","doi":"10.5539/ESR.V9N1P45","DOIUrl":null,"url":null,"abstract":"Divide crossings (or low points or gaps) notched into the North American east-west continental divide segments completely encircling Wyoming’s Great Divide Basin interior drainage region (as observed on detailed topographic maps) are used to compare the commonly accepted regional geomorphology paradigm with a fundamentally different and new regional geomorphology paradigm. Paradigms are sets of rules governing how a scientific discipline conducts its research and are judged on their ability to explain observed evidence. Published literature is used to contrast an accepted paradigm interpretation that east-oriented drainage previously flowed across what is now the Great Divide Basin with the new paradigm basic requirement that mountain range and continental divide uplift occurred while immense south-oriented floods flowed across them. Numerous divide crossings are notched into the continental divide segments now completely encircling the relatively flat-floored Great Divide Basin interior drainage area and divide crossings observed along each of the Great Divide Basin’s north, east, south, and west margins are described and interpreted first from the accepted paradigm perspective (using published literature interpretations to the extent possible) and second from the new paradigm perspective. The published literature does not mention most of the described divide crossings, much less provide explanations for their origins, perhaps because the accepted paradigm cannot satisfactorily explain those origins. In contrast the new paradigm successfully explains most if not all of the described (and observed, but undescribed) divide crossings, although the new paradigm requires a completely different middle and late Cenozoic regional geologic history than what most published regional geology literature describes.","PeriodicalId":11486,"journal":{"name":"Earth Science Research","volume":"72 1","pages":"45"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Use of Topographic Map Evidence From Drainage Divides Surrounding Wyoming’s Great Divide Basin to Compare Two Fundamentally Different Regional Geomorphology Paradigms\",\"authors\":\"E. Clausen\",\"doi\":\"10.5539/ESR.V9N1P45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Divide crossings (or low points or gaps) notched into the North American east-west continental divide segments completely encircling Wyoming’s Great Divide Basin interior drainage region (as observed on detailed topographic maps) are used to compare the commonly accepted regional geomorphology paradigm with a fundamentally different and new regional geomorphology paradigm. Paradigms are sets of rules governing how a scientific discipline conducts its research and are judged on their ability to explain observed evidence. Published literature is used to contrast an accepted paradigm interpretation that east-oriented drainage previously flowed across what is now the Great Divide Basin with the new paradigm basic requirement that mountain range and continental divide uplift occurred while immense south-oriented floods flowed across them. Numerous divide crossings are notched into the continental divide segments now completely encircling the relatively flat-floored Great Divide Basin interior drainage area and divide crossings observed along each of the Great Divide Basin’s north, east, south, and west margins are described and interpreted first from the accepted paradigm perspective (using published literature interpretations to the extent possible) and second from the new paradigm perspective. The published literature does not mention most of the described divide crossings, much less provide explanations for their origins, perhaps because the accepted paradigm cannot satisfactorily explain those origins. In contrast the new paradigm successfully explains most if not all of the described (and observed, but undescribed) divide crossings, although the new paradigm requires a completely different middle and late Cenozoic regional geologic history than what most published regional geology literature describes.\",\"PeriodicalId\":11486,\"journal\":{\"name\":\"Earth Science Research\",\"volume\":\"72 1\",\"pages\":\"45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Science Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/ESR.V9N1P45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/ESR.V9N1P45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

划分交叉点(或低点或缺口)是北美东西大陆划分段的缺口,完全环绕着怀俄明州的大分水岭盆地内部流域(在详细的地形图上观察到),用于比较普遍接受的区域地貌范式与根本不同的新区域地貌范式。范式是一套指导科学学科如何进行研究的规则,并根据它们解释观察到的证据的能力来判断它们。已发表的文献用于对比公认的范式解释,即以前向东的排水流过现在的大分水岭盆地,与新的范式基本要求,即山脉和大陆分水岭隆起发生时,巨大的南向洪水流过它们。大量的分割线被划入大陆分割线段,现在完全环绕着相对平坦的大分水岭盆地内部流域区域,沿着大分水岭盆地的北、东、南和西边缘观察到的分割线,首先从公认的范式角度(尽可能使用已发表的文献解释)进行描述和解释,其次从新的范式角度进行描述和解释。已发表的文献并没有提到大多数被描述的分水岭,更不用说对它们的起源提供解释了,也许是因为公认的范式不能令人满意地解释这些起源。相比之下,新范式成功地解释了大多数(如果不是全部的话)已描述的(和观察到的,但未描述的)分水岭,尽管新范式要求的中晚期新生代区域地质历史与大多数已发表的区域地质文献所描述的完全不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Use of Topographic Map Evidence From Drainage Divides Surrounding Wyoming’s Great Divide Basin to Compare Two Fundamentally Different Regional Geomorphology Paradigms
Divide crossings (or low points or gaps) notched into the North American east-west continental divide segments completely encircling Wyoming’s Great Divide Basin interior drainage region (as observed on detailed topographic maps) are used to compare the commonly accepted regional geomorphology paradigm with a fundamentally different and new regional geomorphology paradigm. Paradigms are sets of rules governing how a scientific discipline conducts its research and are judged on their ability to explain observed evidence. Published literature is used to contrast an accepted paradigm interpretation that east-oriented drainage previously flowed across what is now the Great Divide Basin with the new paradigm basic requirement that mountain range and continental divide uplift occurred while immense south-oriented floods flowed across them. Numerous divide crossings are notched into the continental divide segments now completely encircling the relatively flat-floored Great Divide Basin interior drainage area and divide crossings observed along each of the Great Divide Basin’s north, east, south, and west margins are described and interpreted first from the accepted paradigm perspective (using published literature interpretations to the extent possible) and second from the new paradigm perspective. The published literature does not mention most of the described divide crossings, much less provide explanations for their origins, perhaps because the accepted paradigm cannot satisfactorily explain those origins. In contrast the new paradigm successfully explains most if not all of the described (and observed, but undescribed) divide crossings, although the new paradigm requires a completely different middle and late Cenozoic regional geologic history than what most published regional geology literature describes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Joints Patterns in Albian to Santonian Strata on the Eastern Flank of the Abakaliki Anticlinorium: Implications on Paleostress Conditions and Fluid Flow Properties in an Unconventional Petroleum System Effects of Variations in Earth’s Gravitational Force Fields on Climate Change Using a New Cenozoic Glacial History Paradigm to Explain Saline-Smoky Hill River Drainage Divide Area Topographic Map Evidence: Kansas, USA Geochemistry of Volcano-sedimentary and Plutonic Formations of the Agbaou Gold Deposit, Ivory Coast Well Log Lithological Analysis and Petrophysical Parameters Calculation of Miocene to Recent Formation Reservoirs in Well P10, Offshore, Northern Rio Del Rey Basin (Southwest Cameroon, Gulf of Guinea)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1