训练数据稀缺的耳语语音柔性参数植入

João Silva, Marco Oliveira, Aníbal J. S. Ferreira
{"title":"训练数据稀缺的耳语语音柔性参数植入","authors":"João Silva, Marco Oliveira, Aníbal J. S. Ferreira","doi":"10.23919/Eusipco47968.2020.9287684","DOIUrl":null,"url":null,"abstract":"Whispered-voice to normal-voice conversion is typically achieved using codec-based analysis and re-synthesis, using statistical conversion of important spectral and prosodic features, or using data-driven end-to-end signal conversion. These approaches are however highly constrained by the architecture of the codec, the statistical projection, or the size and quality of the training data. In this paper, we presume direct implantation of voiced phonemes in whispered speech and we focus on fully flexible parametric models that i) can be independently controlled, ii) synthesize natural and linguistically correct voiced phonemes, iii) preserve idiosyncratic characteristics of a given speaker, and iv) are amenable to co-articulation effects through simple model interpolation. We use natural spoken and sung vowels to illustrate these capabilities in a signal modeling and re-synthesis process where spectral magnitude, phase structure, F0 contour and sound morphing can be independently controlled in arbitrary ways.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"39 1","pages":"416-420"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Flexible parametric implantation of voicing in whispered speech under scarce training data\",\"authors\":\"João Silva, Marco Oliveira, Aníbal J. S. Ferreira\",\"doi\":\"10.23919/Eusipco47968.2020.9287684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Whispered-voice to normal-voice conversion is typically achieved using codec-based analysis and re-synthesis, using statistical conversion of important spectral and prosodic features, or using data-driven end-to-end signal conversion. These approaches are however highly constrained by the architecture of the codec, the statistical projection, or the size and quality of the training data. In this paper, we presume direct implantation of voiced phonemes in whispered speech and we focus on fully flexible parametric models that i) can be independently controlled, ii) synthesize natural and linguistically correct voiced phonemes, iii) preserve idiosyncratic characteristics of a given speaker, and iv) are amenable to co-articulation effects through simple model interpolation. We use natural spoken and sung vowels to illustrate these capabilities in a signal modeling and re-synthesis process where spectral magnitude, phase structure, F0 contour and sound morphing can be independently controlled in arbitrary ways.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"39 1\",\"pages\":\"416-420\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

耳语语音到正常语音的转换通常使用基于编解码器的分析和重新合成,使用重要频谱和韵律特征的统计转换,或使用数据驱动的端到端信号转换来实现。然而,这些方法受到编解码器的体系结构、统计投影或训练数据的大小和质量的高度限制。在本文中,我们假设在低声语音中直接植入发声音素,并将重点放在完全灵活的参数模型上,这些模型i)可以独立控制,ii)合成自然和语言上正确的发声音素,iii)保留给定说话者的特质特征,iv)可以通过简单的模型插值来适应协同发音效应。我们使用自然的口语和歌唱元音来说明信号建模和重新合成过程中的这些能力,其中频谱幅度,相位结构,F0轮廓和声音变形可以以任意方式独立控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flexible parametric implantation of voicing in whispered speech under scarce training data
Whispered-voice to normal-voice conversion is typically achieved using codec-based analysis and re-synthesis, using statistical conversion of important spectral and prosodic features, or using data-driven end-to-end signal conversion. These approaches are however highly constrained by the architecture of the codec, the statistical projection, or the size and quality of the training data. In this paper, we presume direct implantation of voiced phonemes in whispered speech and we focus on fully flexible parametric models that i) can be independently controlled, ii) synthesize natural and linguistically correct voiced phonemes, iii) preserve idiosyncratic characteristics of a given speaker, and iv) are amenable to co-articulation effects through simple model interpolation. We use natural spoken and sung vowels to illustrate these capabilities in a signal modeling and re-synthesis process where spectral magnitude, phase structure, F0 contour and sound morphing can be independently controlled in arbitrary ways.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eusipco 2021 Cover Page A graph-theoretic sensor-selection scheme for covariance-based Motor Imagery (MI) decoding Hidden Markov Model Based Data-driven Calibration of Non-dispersive Infrared Gas Sensor Deep Transform Learning for Multi-Sensor Fusion Two Stages Parallel LMS Structure: A Pipelined Hardware Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1