纳米流体研究的最新趋势报告

IF 1.2 Q4 NANOSCIENCE & NANOTECHNOLOGY international journal of nano dimension Pub Date : 2015-07-01 DOI:10.7508/IJND.2015.03.013
A. Subramaniyan, R. Ilangovan
{"title":"纳米流体研究的最新趋势报告","authors":"A. Subramaniyan, R. Ilangovan","doi":"10.7508/IJND.2015.03.013","DOIUrl":null,"url":null,"abstract":"The term Nanofluids was first coined by Sir Stephen Choi in 1995 at Argonne National Laboratory ,U.S.A .Since the discovery, nanofluid have been explored as heat transfer fluids. Nanofluids increased the thermal conductivity of existing coolants (Water, Ethylene glycol) by a magnitude of hundred times which made them attractive for miniaturization of electronic devices .From 1995 till 2008 nanofluid research was focused on enhancing the thermal conductivity of the base fluid by various parameters like shape of nanoparticle, volume fraction of base fluid and material of base fluid and composition of nanoparticle. A lot of theoretical models have been evolved in an attempt to explain the basic mechanism of heat transfer in a nanofluid .Research has been with respect to viscosity, stability, thermal conductivity and convective heat transfer coefficients of nanofluids. From 2008 nanofluids have been investigated for their electrical properties and reported as electrical conductivity enhancers for base fluid. The latest trend in nanofluid is towards optical properties of nanofluid for direct absorption solar collectors.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A report on the latest trends in nanofluid research\",\"authors\":\"A. Subramaniyan, R. Ilangovan\",\"doi\":\"10.7508/IJND.2015.03.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The term Nanofluids was first coined by Sir Stephen Choi in 1995 at Argonne National Laboratory ,U.S.A .Since the discovery, nanofluid have been explored as heat transfer fluids. Nanofluids increased the thermal conductivity of existing coolants (Water, Ethylene glycol) by a magnitude of hundred times which made them attractive for miniaturization of electronic devices .From 1995 till 2008 nanofluid research was focused on enhancing the thermal conductivity of the base fluid by various parameters like shape of nanoparticle, volume fraction of base fluid and material of base fluid and composition of nanoparticle. A lot of theoretical models have been evolved in an attempt to explain the basic mechanism of heat transfer in a nanofluid .Research has been with respect to viscosity, stability, thermal conductivity and convective heat transfer coefficients of nanofluids. From 2008 nanofluids have been investigated for their electrical properties and reported as electrical conductivity enhancers for base fluid. The latest trend in nanofluid is towards optical properties of nanofluid for direct absorption solar collectors.\",\"PeriodicalId\":14081,\"journal\":{\"name\":\"international journal of nano dimension\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"international journal of nano dimension\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7508/IJND.2015.03.013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"international journal of nano dimension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7508/IJND.2015.03.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

1995年,美国阿贡国家实验室的Stephen Choi先生首次提出了纳米流体这一术语自发现纳米流体以来,人们一直在探索纳米流体作为传热流体。纳米流体将现有冷却剂(水、乙二醇)的导热系数提高了数百倍,这使得纳米流体在电子器件小型化方面具有吸引力。从1995年到2008年,纳米流体的研究重点是通过纳米颗粒的形状、基液的体积分数、基液的材料和纳米颗粒的组成等各种参数来提高基液的导热系数。为了解释纳米流体传热的基本机理,人们发展了许多理论模型,包括纳米流体的粘度、稳定性、导热系数和对流换热系数。从2008年开始,纳米流体的电学性质被研究,并被报道为基液的导电性增强剂。纳米流体研究的最新趋势是研究用于直接吸收太阳能集热器的纳米流体的光学特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A report on the latest trends in nanofluid research
The term Nanofluids was first coined by Sir Stephen Choi in 1995 at Argonne National Laboratory ,U.S.A .Since the discovery, nanofluid have been explored as heat transfer fluids. Nanofluids increased the thermal conductivity of existing coolants (Water, Ethylene glycol) by a magnitude of hundred times which made them attractive for miniaturization of electronic devices .From 1995 till 2008 nanofluid research was focused on enhancing the thermal conductivity of the base fluid by various parameters like shape of nanoparticle, volume fraction of base fluid and material of base fluid and composition of nanoparticle. A lot of theoretical models have been evolved in an attempt to explain the basic mechanism of heat transfer in a nanofluid .Research has been with respect to viscosity, stability, thermal conductivity and convective heat transfer coefficients of nanofluids. From 2008 nanofluids have been investigated for their electrical properties and reported as electrical conductivity enhancers for base fluid. The latest trend in nanofluid is towards optical properties of nanofluid for direct absorption solar collectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
international journal of nano dimension
international journal of nano dimension NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
2.80
自引率
20.00%
发文量
0
期刊最新文献
Thermal performance of natural circulation loop filled with Al2O3/Water nanofluid Experimental and theoretical electronic absorption spectra, optical, photoelectrical characterizations of 1, 2, 3-Thiazaphosphinine and 1, 2-Azaphospholes bearing a chromone ring: Solvatochromic effect and TD/DFT approach Eco-friendly synthesis of surface grafted Carbon nanotubes from sugarcane cubes for development of prolonged release drug delivery platform Investigating thermo-physical properties and thermal performance of Al2O3 and CuO nanoparticles in Water and Ethylene Glycol based fluids Design, simulation and analysis of high-K gate dielectric FinField effect transistor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1