受限边界环形扇形板弹性反应热弹性分析

A. Mahakalkar, Varghese
{"title":"受限边界环形扇形板弹性反应热弹性分析","authors":"A. Mahakalkar, Varghese","doi":"10.22034/JSM.2020.1892727.1547","DOIUrl":null,"url":null,"abstract":"An analytical framework is developed for the thermoelastic analysis of annular sector plate whose boundaries are subjected to elastic reactions. The exact expression for transient heat conduction with internal heat sources is obtained using a classical method. The fourth-order differential equation for the thermally induced deflection is obtained by developing a new integral transformation in accordance with the simply supported elastic supports that are subjected to elastic reactions. Here it is supposed that the movement of the boundaries is limited by an elastic reaction, that is, (a) shearing stress is proportional to the displacement, and (b) the reaction moment is proportional to the rate of change of displacement with respect to the radius. Finally, the maximum thermal stresses distributed linearly over the thickness of the plate are obtained in terms of resultant bending momentum per unit width. The calculation is obtained for the steel, aluminium and copper material plates using Bessel's function can be expressed in infinite series form, and the results are depicted using a few graphs.","PeriodicalId":17126,"journal":{"name":"Journal of Solid Mechanics and Materials Engineering","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermoelastic Analysis of Annular Sector Plate Under Restricted Boundaries Amidst Elastic Reaction\",\"authors\":\"A. Mahakalkar, Varghese\",\"doi\":\"10.22034/JSM.2020.1892727.1547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An analytical framework is developed for the thermoelastic analysis of annular sector plate whose boundaries are subjected to elastic reactions. The exact expression for transient heat conduction with internal heat sources is obtained using a classical method. The fourth-order differential equation for the thermally induced deflection is obtained by developing a new integral transformation in accordance with the simply supported elastic supports that are subjected to elastic reactions. Here it is supposed that the movement of the boundaries is limited by an elastic reaction, that is, (a) shearing stress is proportional to the displacement, and (b) the reaction moment is proportional to the rate of change of displacement with respect to the radius. Finally, the maximum thermal stresses distributed linearly over the thickness of the plate are obtained in terms of resultant bending momentum per unit width. The calculation is obtained for the steel, aluminium and copper material plates using Bessel's function can be expressed in infinite series form, and the results are depicted using a few graphs.\",\"PeriodicalId\":17126,\"journal\":{\"name\":\"Journal of Solid Mechanics and Materials Engineering\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid Mechanics and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/JSM.2020.1892727.1547\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid Mechanics and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/JSM.2020.1892727.1547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种适用于边界受弹性作用的环形扇形板热弹性分析的分析框架。用经典方法得到了内热源瞬态热传导的精确表达式。针对受弹性反力作用的简支弹性支架,提出了一种新的积分变换,得到了热致挠度的四阶微分方程。这里假设边界的移动受到弹性反作用力的限制,即(a)剪切应力与位移成正比,(b)反作用力力矩与位移相对于半径的变化率成正比。最后,最大热应力线性分布在板的厚度,以单位宽度的合成弯曲动量获得。用贝塞尔函数对钢、铝、铜三种材料板进行了无穷级数形式的计算,并用几张图描述了计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermoelastic Analysis of Annular Sector Plate Under Restricted Boundaries Amidst Elastic Reaction
An analytical framework is developed for the thermoelastic analysis of annular sector plate whose boundaries are subjected to elastic reactions. The exact expression for transient heat conduction with internal heat sources is obtained using a classical method. The fourth-order differential equation for the thermally induced deflection is obtained by developing a new integral transformation in accordance with the simply supported elastic supports that are subjected to elastic reactions. Here it is supposed that the movement of the boundaries is limited by an elastic reaction, that is, (a) shearing stress is proportional to the displacement, and (b) the reaction moment is proportional to the rate of change of displacement with respect to the radius. Finally, the maximum thermal stresses distributed linearly over the thickness of the plate are obtained in terms of resultant bending momentum per unit width. The calculation is obtained for the steel, aluminium and copper material plates using Bessel's function can be expressed in infinite series form, and the results are depicted using a few graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dispersion of SH-Wave in a Heterogeneous Orthotropic Layer Sandwiched Between an Inhomogeneous Semi-Infinite Medium and a Heterogeneous Elastic Half-Space Large Deformation Hermitian Finite Element Coupled Thermoelasticity Analysis of Wave Propagation and Reflection in a Finite Domain Free Torsional Vibration Analysis of Hollow and Solid Non-Uniform Rotating Shafts Using Distributed and Lumped Modeling Technique Multi-Objective Optimization of Shot-Peening Parameters Using Modified Taguchi Technique Study on Vibration Band Gap Characteristics of a Branched Shape Periodic Structure Using the GDQR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1