基于神经网络的预测最优硬件配置模型:解决计算密集型问题

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS International Journal of Grid and High Performance Computing Pub Date : 2021-04-01 DOI:10.4018/IJGHPC.2021040106
M. M. Al-Qutt, H. Khaled, Rania El-Gohary
{"title":"基于神经网络的预测最优硬件配置模型:解决计算密集型问题","authors":"M. M. Al-Qutt, H. Khaled, Rania El-Gohary","doi":"10.4018/IJGHPC.2021040106","DOIUrl":null,"url":null,"abstract":"Deciding the number of processors that can efficiently speed-up solving a computationally intensive problem while perceiving efficient power consumption constitutes a major challenge to researcher in the HPC high performance computing realm. This paper exploits machine learning techniques to propose and implement a recommender system that recommends the optimal HPC architecture given the problem size. An approach for multi-objective function optimization based on neural network (neural network inversion) is employed. The neural network inversion approach is used for forward problem optimization. The objective functions in concern are maximizing the speedup and minimizing the power consumption. The recommendations of the proposed prediction systems achieved more than 89% accuracy for both validation and testing set. The experiments were conducted on 2500 CUDA core on Tesla K20 Kepler GPU Accelerator and Intel(R) Xeon(R) CPU E5-2695 v2.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"87 1","pages":"95-117"},"PeriodicalIF":0.6000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural Network Inversion-Based Model for Predicting an Optimal Hardware Configuration: Solving Computationally Intensive Problems\",\"authors\":\"M. M. Al-Qutt, H. Khaled, Rania El-Gohary\",\"doi\":\"10.4018/IJGHPC.2021040106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deciding the number of processors that can efficiently speed-up solving a computationally intensive problem while perceiving efficient power consumption constitutes a major challenge to researcher in the HPC high performance computing realm. This paper exploits machine learning techniques to propose and implement a recommender system that recommends the optimal HPC architecture given the problem size. An approach for multi-objective function optimization based on neural network (neural network inversion) is employed. The neural network inversion approach is used for forward problem optimization. The objective functions in concern are maximizing the speedup and minimizing the power consumption. The recommendations of the proposed prediction systems achieved more than 89% accuracy for both validation and testing set. The experiments were conducted on 2500 CUDA core on Tesla K20 Kepler GPU Accelerator and Intel(R) Xeon(R) CPU E5-2695 v2.\",\"PeriodicalId\":43565,\"journal\":{\"name\":\"International Journal of Grid and High Performance Computing\",\"volume\":\"87 1\",\"pages\":\"95-117\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Grid and High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJGHPC.2021040106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJGHPC.2021040106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

在计算密集型问题的求解过程中,如何在保证高效功耗的前提下确定处理器的数量,是高性能计算领域研究人员面临的一个重大挑战。本文利用机器学习技术提出并实现了一个推荐系统,该系统在给定问题规模的情况下推荐最优的HPC架构。采用了一种基于神经网络的多目标函数优化方法(神经网络反演)。采用神经网络反演方法进行正向优化。所关注的目标函数是加速最大化和功耗最小化。所建议的预测系统在验证集和测试集的准确率均超过89%。实验在Tesla K20 Kepler GPU Accelerator和Intel(R) Xeon(R) CPU E5-2695 v2上,在2500 CUDA核上进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural Network Inversion-Based Model for Predicting an Optimal Hardware Configuration: Solving Computationally Intensive Problems
Deciding the number of processors that can efficiently speed-up solving a computationally intensive problem while perceiving efficient power consumption constitutes a major challenge to researcher in the HPC high performance computing realm. This paper exploits machine learning techniques to propose and implement a recommender system that recommends the optimal HPC architecture given the problem size. An approach for multi-objective function optimization based on neural network (neural network inversion) is employed. The neural network inversion approach is used for forward problem optimization. The objective functions in concern are maximizing the speedup and minimizing the power consumption. The recommendations of the proposed prediction systems achieved more than 89% accuracy for both validation and testing set. The experiments were conducted on 2500 CUDA core on Tesla K20 Kepler GPU Accelerator and Intel(R) Xeon(R) CPU E5-2695 v2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
24
期刊最新文献
A Potent View on the Effects of E-Learning Pre-Cutoff Value Calculation Method for Accelerating Metric Space Outlier Detection A Security Method for Cloud Storage Using Data Classification An Energy-Efficient Multi-Channel Design for Distributed Wireless Sensor Networks On Allocation Algorithms for Manycore Systems With Network on Chip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1