网关上的敌人:使用博弈论的审查弹性代理分配

Milad Nasr, Sadegh Farhang, A. Houmansadr, Jens Grossklags
{"title":"网关上的敌人:使用博弈论的审查弹性代理分配","authors":"Milad Nasr, Sadegh Farhang, A. Houmansadr, Jens Grossklags","doi":"10.14722/ndss.2019.23496","DOIUrl":null,"url":null,"abstract":"A core technique used by popular proxy-based circumvention systems like Tor is to privately and selectively distribute the IP addresses of circumvention proxies among censored clients to keep them unknown to the censors. In Tor, for instance, such privately shared proxies are known as bridges. A key challenge to this mechanism is the insider attack problem: censoring agents can impersonate benign censored clients in order to learn (and then block) the privately shared circumvention proxies. To minimize the risks of the insider attack threat, in-thewild circumvention systems like Tor use various proxy assignment mechanisms in order to minimize the risk of proxy enumeration by the censors, while providing access to a large fraction of censored clients. Unfortunately, existing proxy assignment mechanisms (like the one used by Tor) are based on ad hoc heuristics that offer no theoretical guarantees and are easily evaded in practice. In this paper, we take a systematic approach to the problem of proxy distribution in circumvention systems by establishing a gametheoretic framework. We model the proxy assignment problem as a game between circumvention system operators and the censors, and use game theory to derive the optimal strategies of each of the parties. Using our framework, we derive the best (optimal) proxy assignment mechanism of a circumvention system like Tor in the presence of the strongest censorship adversary who takes her best censorship actions. We perform extensive simulations to evaluate our optimal proxy assignment algorithm under various adversarial and network settings. We show that the algorithm has superior performance compared to the state of the art, i.e., provides stronger resistance to censorship even against the strongest censorship adversary. Our study establishes a generic framework for optimal proxy assignment that can be applied to various types of circumvention systems and under various threat models. We conclude with lessons and recommendations for the design of proxy-based circumvention systems.","PeriodicalId":20444,"journal":{"name":"Proceedings 2019 Network and Distributed System Security Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Enemy At the Gateways: Censorship-Resilient Proxy Distribution Using Game Theory\",\"authors\":\"Milad Nasr, Sadegh Farhang, A. Houmansadr, Jens Grossklags\",\"doi\":\"10.14722/ndss.2019.23496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A core technique used by popular proxy-based circumvention systems like Tor is to privately and selectively distribute the IP addresses of circumvention proxies among censored clients to keep them unknown to the censors. In Tor, for instance, such privately shared proxies are known as bridges. A key challenge to this mechanism is the insider attack problem: censoring agents can impersonate benign censored clients in order to learn (and then block) the privately shared circumvention proxies. To minimize the risks of the insider attack threat, in-thewild circumvention systems like Tor use various proxy assignment mechanisms in order to minimize the risk of proxy enumeration by the censors, while providing access to a large fraction of censored clients. Unfortunately, existing proxy assignment mechanisms (like the one used by Tor) are based on ad hoc heuristics that offer no theoretical guarantees and are easily evaded in practice. In this paper, we take a systematic approach to the problem of proxy distribution in circumvention systems by establishing a gametheoretic framework. We model the proxy assignment problem as a game between circumvention system operators and the censors, and use game theory to derive the optimal strategies of each of the parties. Using our framework, we derive the best (optimal) proxy assignment mechanism of a circumvention system like Tor in the presence of the strongest censorship adversary who takes her best censorship actions. We perform extensive simulations to evaluate our optimal proxy assignment algorithm under various adversarial and network settings. We show that the algorithm has superior performance compared to the state of the art, i.e., provides stronger resistance to censorship even against the strongest censorship adversary. Our study establishes a generic framework for optimal proxy assignment that can be applied to various types of circumvention systems and under various threat models. We conclude with lessons and recommendations for the design of proxy-based circumvention systems.\",\"PeriodicalId\":20444,\"journal\":{\"name\":\"Proceedings 2019 Network and Distributed System Security Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2019 Network and Distributed System Security Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14722/ndss.2019.23496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2019 Network and Distributed System Security Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14722/ndss.2019.23496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

流行的基于代理的翻墙系统(如Tor)使用的核心技术是在被审查的客户端之间私下和有选择地分发翻墙代理的IP地址,以使审查者不知道它们。例如,在Tor中,这种私人共享的代理被称为桥接。这种机制面临的一个关键挑战是内部攻击问题:审查代理可以冒充被审查的良性客户端,以便学习(然后阻止)私有共享的规避代理。为了最大限度地降低内部攻击威胁的风险,像Tor这样的野外规避系统使用各种代理分配机制,以最大限度地降低审查者代理枚举的风险,同时提供对大部分审查客户端的访问。不幸的是,现有的代理分配机制(如Tor所使用的)是基于临时启发式的,无法提供理论上的保证,并且在实践中很容易被规避。本文通过建立一个博弈论框架,系统地研究了规避系统中的代理分配问题。本文将代理分配问题建模为规避系统操作者与审查者之间的博弈,并利用博弈论推导出双方的最优策略。使用我们的框架,我们推导了在最强审查对手存在的情况下,像Tor这样的规避系统的最佳(最优)代理分配机制,该对手采取了最好的审查行动。我们进行了大量的模拟来评估我们在各种对抗和网络设置下的最佳代理分配算法。我们表明,与目前的技术水平相比,该算法具有优越的性能,即即使面对最强的审查对手,也能提供更强的审查阻力。我们的研究建立了一个通用的最优代理分配框架,可以应用于各种类型的规避系统和各种威胁模型。最后,我们对基于代理的规避系统的设计提出了经验教训和建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enemy At the Gateways: Censorship-Resilient Proxy Distribution Using Game Theory
A core technique used by popular proxy-based circumvention systems like Tor is to privately and selectively distribute the IP addresses of circumvention proxies among censored clients to keep them unknown to the censors. In Tor, for instance, such privately shared proxies are known as bridges. A key challenge to this mechanism is the insider attack problem: censoring agents can impersonate benign censored clients in order to learn (and then block) the privately shared circumvention proxies. To minimize the risks of the insider attack threat, in-thewild circumvention systems like Tor use various proxy assignment mechanisms in order to minimize the risk of proxy enumeration by the censors, while providing access to a large fraction of censored clients. Unfortunately, existing proxy assignment mechanisms (like the one used by Tor) are based on ad hoc heuristics that offer no theoretical guarantees and are easily evaded in practice. In this paper, we take a systematic approach to the problem of proxy distribution in circumvention systems by establishing a gametheoretic framework. We model the proxy assignment problem as a game between circumvention system operators and the censors, and use game theory to derive the optimal strategies of each of the parties. Using our framework, we derive the best (optimal) proxy assignment mechanism of a circumvention system like Tor in the presence of the strongest censorship adversary who takes her best censorship actions. We perform extensive simulations to evaluate our optimal proxy assignment algorithm under various adversarial and network settings. We show that the algorithm has superior performance compared to the state of the art, i.e., provides stronger resistance to censorship even against the strongest censorship adversary. Our study establishes a generic framework for optimal proxy assignment that can be applied to various types of circumvention systems and under various threat models. We conclude with lessons and recommendations for the design of proxy-based circumvention systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network and System Security: 17th International Conference, NSS 2023, Canterbury, UK, August 14–16, 2023, Proceedings Network and System Security: 16th International Conference, NSS 2022, Denarau Island, Fiji, December 9–12, 2022, Proceedings Network and System Security: 15th International Conference, NSS 2021, Tianjin, China, October 23, 2021, Proceedings Network and System Security: 14th International Conference, NSS 2020, Melbourne, VIC, Australia, November 25–27, 2020, Proceedings Neuro-Symbolic Execution: Augmenting Symbolic Execution with Neural Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1