S. Fiore, Alessandro D'Anca, D. Elia, Cosimo Palazzo, Dean N. Williams, Ian T Foster, G. Aloisio
{"title":"Ophidia:用于科学数据分析的完整软件堆栈","authors":"S. Fiore, Alessandro D'Anca, D. Elia, Cosimo Palazzo, Dean N. Williams, Ian T Foster, G. Aloisio","doi":"10.1109/HPCSim.2014.6903706","DOIUrl":null,"url":null,"abstract":"The Ophidia project aims to provide a big data analytics platform solution that addresses scientific use cases related to large volumes of multidimensional data. In this work, the Ophidia software infrastructure is discussed in detail, presenting the entire software stack from level-0 (the Ophidia data store) to level-3 (the Ophidia web service front end). In particular, this paper presents the big data cube primitives provided by the Ophidia framework, discussing in detail the most relevant and available data cube manipulation operators. These primitives represent the proper foundations to build more complex data cube operators like the apex one presented in this paper. A massive data reduction experiment on a 1TB climate dataset is also presented to demonstrate the apex workflow in the context of the proposed framework.","PeriodicalId":6469,"journal":{"name":"2014 International Conference on High Performance Computing & Simulation (HPCS)","volume":"30 1","pages":"343-350"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Ophidia: A full software stack for scientific data analytics\",\"authors\":\"S. Fiore, Alessandro D'Anca, D. Elia, Cosimo Palazzo, Dean N. Williams, Ian T Foster, G. Aloisio\",\"doi\":\"10.1109/HPCSim.2014.6903706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Ophidia project aims to provide a big data analytics platform solution that addresses scientific use cases related to large volumes of multidimensional data. In this work, the Ophidia software infrastructure is discussed in detail, presenting the entire software stack from level-0 (the Ophidia data store) to level-3 (the Ophidia web service front end). In particular, this paper presents the big data cube primitives provided by the Ophidia framework, discussing in detail the most relevant and available data cube manipulation operators. These primitives represent the proper foundations to build more complex data cube operators like the apex one presented in this paper. A massive data reduction experiment on a 1TB climate dataset is also presented to demonstrate the apex workflow in the context of the proposed framework.\",\"PeriodicalId\":6469,\"journal\":{\"name\":\"2014 International Conference on High Performance Computing & Simulation (HPCS)\",\"volume\":\"30 1\",\"pages\":\"343-350\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on High Performance Computing & Simulation (HPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCSim.2014.6903706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2014.6903706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ophidia: A full software stack for scientific data analytics
The Ophidia project aims to provide a big data analytics platform solution that addresses scientific use cases related to large volumes of multidimensional data. In this work, the Ophidia software infrastructure is discussed in detail, presenting the entire software stack from level-0 (the Ophidia data store) to level-3 (the Ophidia web service front end). In particular, this paper presents the big data cube primitives provided by the Ophidia framework, discussing in detail the most relevant and available data cube manipulation operators. These primitives represent the proper foundations to build more complex data cube operators like the apex one presented in this paper. A massive data reduction experiment on a 1TB climate dataset is also presented to demonstrate the apex workflow in the context of the proposed framework.