{"title":"磁性有丝分裂:炎症性疾病的非侵入性治疗?","authors":"Alfredo FRANCO-OBREG覰","doi":"10.32604/biocell.2023.025357","DOIUrl":null,"url":null,"abstract":"An organism's survival depends on its ability to adapt to stress. Mitochondria are the cellular integrators of environmental stressors that ultimately translate their responses at the organismal level, and are thus central to the process whereby organisms adapt to their respective environments. Mitochondria produce molecular energy via oxidative phosphorylation that then allows cells to biosynthetically respond and adapt to changes in their environment. Reactive oxygen species (ROS) are by-products of oxidative phosphorylation that can be either beneficial or damaging, depending on the context;ROS are hence both the conveyors of environmental stress as well as cellular \"adaptogens”. Mitohormesis refers to the process whereby low levels of oxidative stress spur survival adaptations, whereas excessive levels stymie survival. Low energy and frequency pulsing electromagnetic fields have been recently shown capable of stimulating mitochondrial respiration and ROS production and instilling mitohormetic survival adaptations, similarly to, yet independently of, exercise, opening avenues for the future development of Magnetic Mitohormetic interventions for the improvement of human health. This viewpoint explores the possibilities and nuances of magnetic-based therapies as a form of clinical intervention to non-invasively activate magnetic mitohormesis for the management of chronic diseases. © 2023 Centro Regional de Invest. Cientif. y Tecn.. All rights reserved.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Magnetic mitohormesis: A non-invasive therapy for inflammatory disorders?\",\"authors\":\"Alfredo FRANCO-OBREG覰\",\"doi\":\"10.32604/biocell.2023.025357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An organism's survival depends on its ability to adapt to stress. Mitochondria are the cellular integrators of environmental stressors that ultimately translate their responses at the organismal level, and are thus central to the process whereby organisms adapt to their respective environments. Mitochondria produce molecular energy via oxidative phosphorylation that then allows cells to biosynthetically respond and adapt to changes in their environment. Reactive oxygen species (ROS) are by-products of oxidative phosphorylation that can be either beneficial or damaging, depending on the context;ROS are hence both the conveyors of environmental stress as well as cellular \\\"adaptogens”. Mitohormesis refers to the process whereby low levels of oxidative stress spur survival adaptations, whereas excessive levels stymie survival. Low energy and frequency pulsing electromagnetic fields have been recently shown capable of stimulating mitochondrial respiration and ROS production and instilling mitohormetic survival adaptations, similarly to, yet independently of, exercise, opening avenues for the future development of Magnetic Mitohormetic interventions for the improvement of human health. This viewpoint explores the possibilities and nuances of magnetic-based therapies as a form of clinical intervention to non-invasively activate magnetic mitohormesis for the management of chronic diseases. © 2023 Centro Regional de Invest. Cientif. y Tecn.. All rights reserved.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.32604/biocell.2023.025357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32604/biocell.2023.025357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Magnetic mitohormesis: A non-invasive therapy for inflammatory disorders?
An organism's survival depends on its ability to adapt to stress. Mitochondria are the cellular integrators of environmental stressors that ultimately translate their responses at the organismal level, and are thus central to the process whereby organisms adapt to their respective environments. Mitochondria produce molecular energy via oxidative phosphorylation that then allows cells to biosynthetically respond and adapt to changes in their environment. Reactive oxygen species (ROS) are by-products of oxidative phosphorylation that can be either beneficial or damaging, depending on the context;ROS are hence both the conveyors of environmental stress as well as cellular "adaptogens”. Mitohormesis refers to the process whereby low levels of oxidative stress spur survival adaptations, whereas excessive levels stymie survival. Low energy and frequency pulsing electromagnetic fields have been recently shown capable of stimulating mitochondrial respiration and ROS production and instilling mitohormetic survival adaptations, similarly to, yet independently of, exercise, opening avenues for the future development of Magnetic Mitohormetic interventions for the improvement of human health. This viewpoint explores the possibilities and nuances of magnetic-based therapies as a form of clinical intervention to non-invasively activate magnetic mitohormesis for the management of chronic diseases. © 2023 Centro Regional de Invest. Cientif. y Tecn.. All rights reserved.