有机量子材料:综述

SmartMat Pub Date : 2023-03-15 DOI:10.1002/smm2.1196
Xin Wang, Qichun Zhang
{"title":"有机量子材料:综述","authors":"Xin Wang, Qichun Zhang","doi":"10.1002/smm2.1196","DOIUrl":null,"url":null,"abstract":"Interests in organic quantum materials (OQMs) have been explosively growing in the field of condensed physics of matter due to their rich chemistry and unique quantum properties. They are strongly correlated systems and show novel electromagnetic performance such as high‐temperature superconducting, quantum sensing, spin electronics, quantum dots, topological insulating, quantum Hall effects, spin liquids, qubits, and so forth, which exhibit promising prospects in information communication and thus facilitate the construction of a modern intelligent society. This article reviews recent developments in the research on the electromagnetic characteristics of OQMs. We mainly give an overview on the progress of superconductors and quantum spin liquids based on organic materials and describe their possible mechanisms. Numerous experimental findings exhibit new exciton interactions and provide insights into exotic electronic properties. Finally, their association and strategies for realizing multiple quantum states in one system are discussed.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Organic quantum materials: A review\",\"authors\":\"Xin Wang, Qichun Zhang\",\"doi\":\"10.1002/smm2.1196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interests in organic quantum materials (OQMs) have been explosively growing in the field of condensed physics of matter due to their rich chemistry and unique quantum properties. They are strongly correlated systems and show novel electromagnetic performance such as high‐temperature superconducting, quantum sensing, spin electronics, quantum dots, topological insulating, quantum Hall effects, spin liquids, qubits, and so forth, which exhibit promising prospects in information communication and thus facilitate the construction of a modern intelligent society. This article reviews recent developments in the research on the electromagnetic characteristics of OQMs. We mainly give an overview on the progress of superconductors and quantum spin liquids based on organic materials and describe their possible mechanisms. Numerous experimental findings exhibit new exciton interactions and provide insights into exotic electronic properties. Finally, their association and strategies for realizing multiple quantum states in one system are discussed.\",\"PeriodicalId\":21794,\"journal\":{\"name\":\"SmartMat\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SmartMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smm2.1196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SmartMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smm2.1196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

有机量子材料由于其丰富的化学性质和独特的量子性质,在物质凝聚态物理领域引起了人们的极大兴趣。它们是强相关系统,具有高温超导、量子传感、自旋电子学、量子点、拓扑绝缘、量子霍尔效应、自旋液体、量子比特等新颖的电磁性能,在信息通信中具有广阔的应用前景,从而促进了现代智能社会的建设。本文综述了近年来OQMs电磁特性的研究进展。本文主要综述了基于有机材料的超导体和量子自旋液体的研究进展,并描述了它们的可能机制。许多实验发现展示了新的激子相互作用,并提供了对奇异电子性质的见解。最后,讨论了它们之间的关联以及在一个系统中实现多个量子态的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Organic quantum materials: A review
Interests in organic quantum materials (OQMs) have been explosively growing in the field of condensed physics of matter due to their rich chemistry and unique quantum properties. They are strongly correlated systems and show novel electromagnetic performance such as high‐temperature superconducting, quantum sensing, spin electronics, quantum dots, topological insulating, quantum Hall effects, spin liquids, qubits, and so forth, which exhibit promising prospects in information communication and thus facilitate the construction of a modern intelligent society. This article reviews recent developments in the research on the electromagnetic characteristics of OQMs. We mainly give an overview on the progress of superconductors and quantum spin liquids based on organic materials and describe their possible mechanisms. Numerous experimental findings exhibit new exciton interactions and provide insights into exotic electronic properties. Finally, their association and strategies for realizing multiple quantum states in one system are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chiral gypsum with high‐performance mechanical properties induced by self‐assembly of chiral amino acid on an amorphous mineral Electrolyte‐gated organic field‐effect transistors with high operational stability and lifetime in practical electrolytes Efforts of implementing ultra‐flexible thin‐film encapsulation for optoelectronic devices based on atomic layer deposition technology Flexible retinomorphic vision sensors with scotopic and photopic adaptation for a fully flexible neuromorphic machine vision system Coral‐inspired anti‐biofilm therapeutic abutments as a new paradigm for prevention and treatment of peri‐implant infection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1