采用SH-SAW的P4J-3型浸入式液相传感器

T. Kogai, H. Yatsuda, S. Shiokawa
{"title":"采用SH-SAW的P4J-3型浸入式液相传感器","authors":"T. Kogai, H. Yatsuda, S. Shiokawa","doi":"10.1109/ULTSYM.2007.526","DOIUrl":null,"url":null,"abstract":"This paper describes an SH-SAW based sensor device which can be directly dipped into a liquid. The sensor device is composed of a two-channel SH-SAW delay line on a 36Y-X LiTaO3. Those IDTs are surrounded with epoxy walls with a 50 mum height and a 160 mum thickness. Since the epoxy walls are constructed by a photo-lithography technique using a thick epoxy based photo resist, the thickness of wall can be minimized and as a result the SH-SAW propagation loss due to the walls can be minimized. Glass covers with an epoxy adhesive are attached onto the walls. Then air-cavities above the IDTs can be achieved and the IDTs can be perfectly isolated from the liquid. In this paper, experimental results of 50 MHz dip-type SH-SAW sensors on 36Y-X LiTaO3 are presented. Since the SH-SAW which propagates on the un-metallized propagation area in a liquid with a low permittivity attenuates due to surface skimming bulk wave excitation, the obtained permittivity and conductivity are slightly different from the exact values. In order to improve this drawback, a compensation method is presented.","PeriodicalId":6355,"journal":{"name":"2007 IEEE Ultrasonics Symposium Proceedings","volume":"42 1","pages":"2091-2094"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"P4J-3 Dip-Type Liquid-Phase Sensor Using SH-SAW\",\"authors\":\"T. Kogai, H. Yatsuda, S. Shiokawa\",\"doi\":\"10.1109/ULTSYM.2007.526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an SH-SAW based sensor device which can be directly dipped into a liquid. The sensor device is composed of a two-channel SH-SAW delay line on a 36Y-X LiTaO3. Those IDTs are surrounded with epoxy walls with a 50 mum height and a 160 mum thickness. Since the epoxy walls are constructed by a photo-lithography technique using a thick epoxy based photo resist, the thickness of wall can be minimized and as a result the SH-SAW propagation loss due to the walls can be minimized. Glass covers with an epoxy adhesive are attached onto the walls. Then air-cavities above the IDTs can be achieved and the IDTs can be perfectly isolated from the liquid. In this paper, experimental results of 50 MHz dip-type SH-SAW sensors on 36Y-X LiTaO3 are presented. Since the SH-SAW which propagates on the un-metallized propagation area in a liquid with a low permittivity attenuates due to surface skimming bulk wave excitation, the obtained permittivity and conductivity are slightly different from the exact values. In order to improve this drawback, a compensation method is presented.\",\"PeriodicalId\":6355,\"journal\":{\"name\":\"2007 IEEE Ultrasonics Symposium Proceedings\",\"volume\":\"42 1\",\"pages\":\"2091-2094\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Ultrasonics Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2007.526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Ultrasonics Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2007.526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了一种基于SH-SAW的可直接浸入液体的传感器装置。传感器装置由36Y-X LiTaO3上的双通道SH-SAW延迟线组成。这些idt被环氧树脂墙包围,其高度为50微米,厚度为160微米。由于环氧树脂壁是通过使用厚环氧基光刻胶的光刻技术构建的,因此壁的厚度可以最小化,因此由于壁引起的SH-SAW传播损失可以最小化。用环氧胶粘剂粘在墙上的玻璃罩。然后,可以实现在idt上方的空腔,并且可以将idt与液体完全隔离。本文介绍了36Y-X LiTaO3上50 MHz浸入式SH-SAW传感器的实验结果。由于SH-SAW在低介电常数的液体中在未金属化的传播区传播,由于表面掠掠体波激发而衰减,因此得到的介电常数和电导率与精确值略有不同。为了改善这一缺陷,提出了一种补偿方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
P4J-3 Dip-Type Liquid-Phase Sensor Using SH-SAW
This paper describes an SH-SAW based sensor device which can be directly dipped into a liquid. The sensor device is composed of a two-channel SH-SAW delay line on a 36Y-X LiTaO3. Those IDTs are surrounded with epoxy walls with a 50 mum height and a 160 mum thickness. Since the epoxy walls are constructed by a photo-lithography technique using a thick epoxy based photo resist, the thickness of wall can be minimized and as a result the SH-SAW propagation loss due to the walls can be minimized. Glass covers with an epoxy adhesive are attached onto the walls. Then air-cavities above the IDTs can be achieved and the IDTs can be perfectly isolated from the liquid. In this paper, experimental results of 50 MHz dip-type SH-SAW sensors on 36Y-X LiTaO3 are presented. Since the SH-SAW which propagates on the un-metallized propagation area in a liquid with a low permittivity attenuates due to surface skimming bulk wave excitation, the obtained permittivity and conductivity are slightly different from the exact values. In order to improve this drawback, a compensation method is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
10B-3 Vibrating Interventional Device Detection Using Real-Time 3D Color Doppler P5E-8 The Method of Reverberation-Ray Matrix - A New Matrix Analysis of Waves in Piezoelectric Laminates P1D-4 Characteristics of a Novel Magnetic Field Sensor Using Piezoelectric Vibrations P5C-3 Field Simulation Parameters Design for Realistic Statistical Parameters of Radio - Frequency Ultrasound Images 2F-1 Fabrication and Performance of a High-Frequency Geometrically Focussed Composite Transducer with Triangular Pillar Geometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1