{"title":"基于NEMS的分子生物传感双金属悬臂梁温度效应的数学建模与分析","authors":"Miranji Katta, S. R.","doi":"10.48129/kjs.20495","DOIUrl":null,"url":null,"abstract":"As Lab-on-Chip platforms with micro-and nano-dimensions evolve biosensors using miniaturized and high-sensitivity cantilevers are becoming more attractive. Although these sensors function in non-isothermal situations, computational mathematics generally ignores the temperature. Conversely, biosensor cannot be designed with a single-layered cantilever. Yet, in Nano-Electro- Mechanical-Systems, the influence of temperature is more likely to be dominant since the surfaceto- volume ratio is higher. In the context of this conclusion, the mathematical modelling comprises temperature and the associated material attributes. This work presents a simple and direct analytical technique for analysing the control of bimetallic cantilevers with NEMS-based sensing and actuation mechanisms. Methodological techniques were used to develop and solve some wellknown models of mathematical equations. Parametric analysis data is a major factor in the functioning of all of the other works studied. The findings of FEA comparisons and experiments reveal that the mathematical model's predictions are more than 20% correct.","PeriodicalId":49933,"journal":{"name":"Kuwait Journal of Science & Engineering","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Modelling and Analysis of Temperature Effects in NEMS Based Bi-Metallic Cantilever for Molecular Biosensing Applications\",\"authors\":\"Miranji Katta, S. R.\",\"doi\":\"10.48129/kjs.20495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As Lab-on-Chip platforms with micro-and nano-dimensions evolve biosensors using miniaturized and high-sensitivity cantilevers are becoming more attractive. Although these sensors function in non-isothermal situations, computational mathematics generally ignores the temperature. Conversely, biosensor cannot be designed with a single-layered cantilever. Yet, in Nano-Electro- Mechanical-Systems, the influence of temperature is more likely to be dominant since the surfaceto- volume ratio is higher. In the context of this conclusion, the mathematical modelling comprises temperature and the associated material attributes. This work presents a simple and direct analytical technique for analysing the control of bimetallic cantilevers with NEMS-based sensing and actuation mechanisms. Methodological techniques were used to develop and solve some wellknown models of mathematical equations. Parametric analysis data is a major factor in the functioning of all of the other works studied. The findings of FEA comparisons and experiments reveal that the mathematical model's predictions are more than 20% correct.\",\"PeriodicalId\":49933,\"journal\":{\"name\":\"Kuwait Journal of Science & Engineering\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kuwait Journal of Science & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48129/kjs.20495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kuwait Journal of Science & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48129/kjs.20495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mathematical Modelling and Analysis of Temperature Effects in NEMS Based Bi-Metallic Cantilever for Molecular Biosensing Applications
As Lab-on-Chip platforms with micro-and nano-dimensions evolve biosensors using miniaturized and high-sensitivity cantilevers are becoming more attractive. Although these sensors function in non-isothermal situations, computational mathematics generally ignores the temperature. Conversely, biosensor cannot be designed with a single-layered cantilever. Yet, in Nano-Electro- Mechanical-Systems, the influence of temperature is more likely to be dominant since the surfaceto- volume ratio is higher. In the context of this conclusion, the mathematical modelling comprises temperature and the associated material attributes. This work presents a simple and direct analytical technique for analysing the control of bimetallic cantilevers with NEMS-based sensing and actuation mechanisms. Methodological techniques were used to develop and solve some wellknown models of mathematical equations. Parametric analysis data is a major factor in the functioning of all of the other works studied. The findings of FEA comparisons and experiments reveal that the mathematical model's predictions are more than 20% correct.