{"title":"基于effentnetv2的动态手势识别,利用变换后的三轴加速度信号尺度图","authors":"Bumsoo Kim, Sanghyun Seo","doi":"10.1093/jcde/qwad068","DOIUrl":null,"url":null,"abstract":"\n In this paper, a dynamic gesture recognition system is proposed using triaxial acceleration signal and image-based deep neural network. With our dexterous glove device, 1D acceleration signal can be measured from each finger and decomposed to time-divided frequency components via wavelet transformation, which known as scalogram as image-like format. To feed-forward the scalogram with single 2D convolutional neural networks(CNN) allows the gesture having temporality to be easily recognized without any complex system such as RNN, LSTM, or spatio-temporal feature as 3D CNN, etc. To classify the image with general input dimension of image RGB channels, we numerically reconstruct fifteen scalograms into one RGB image with various representation methods. In experiments, we employ the off-the-shelf model, EfficientNetV2 small to large model as an image classification model with fine-tuning. To evaluate our system, we bulid our custom bicycle hand signals as dynamic gesture dataset under our transformation system, and then qualitatively compare the reconstruction method with matrix representation methods. In addition, we use other signal transformation tools such as the fast Fourier transform, and short-time Fourier transform and then explain the advantages of scalogram classification in the terms of time-frequency resolution trade-off issue.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EfficientNetV2-based dynamic gesture recognition using transformed scalogram from triaxial acceleration signal\",\"authors\":\"Bumsoo Kim, Sanghyun Seo\",\"doi\":\"10.1093/jcde/qwad068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, a dynamic gesture recognition system is proposed using triaxial acceleration signal and image-based deep neural network. With our dexterous glove device, 1D acceleration signal can be measured from each finger and decomposed to time-divided frequency components via wavelet transformation, which known as scalogram as image-like format. To feed-forward the scalogram with single 2D convolutional neural networks(CNN) allows the gesture having temporality to be easily recognized without any complex system such as RNN, LSTM, or spatio-temporal feature as 3D CNN, etc. To classify the image with general input dimension of image RGB channels, we numerically reconstruct fifteen scalograms into one RGB image with various representation methods. In experiments, we employ the off-the-shelf model, EfficientNetV2 small to large model as an image classification model with fine-tuning. To evaluate our system, we bulid our custom bicycle hand signals as dynamic gesture dataset under our transformation system, and then qualitatively compare the reconstruction method with matrix representation methods. In addition, we use other signal transformation tools such as the fast Fourier transform, and short-time Fourier transform and then explain the advantages of scalogram classification in the terms of time-frequency resolution trade-off issue.\",\"PeriodicalId\":48611,\"journal\":{\"name\":\"Journal of Computational Design and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Design and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jcde/qwad068\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Design and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jcde/qwad068","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
EfficientNetV2-based dynamic gesture recognition using transformed scalogram from triaxial acceleration signal
In this paper, a dynamic gesture recognition system is proposed using triaxial acceleration signal and image-based deep neural network. With our dexterous glove device, 1D acceleration signal can be measured from each finger and decomposed to time-divided frequency components via wavelet transformation, which known as scalogram as image-like format. To feed-forward the scalogram with single 2D convolutional neural networks(CNN) allows the gesture having temporality to be easily recognized without any complex system such as RNN, LSTM, or spatio-temporal feature as 3D CNN, etc. To classify the image with general input dimension of image RGB channels, we numerically reconstruct fifteen scalograms into one RGB image with various representation methods. In experiments, we employ the off-the-shelf model, EfficientNetV2 small to large model as an image classification model with fine-tuning. To evaluate our system, we bulid our custom bicycle hand signals as dynamic gesture dataset under our transformation system, and then qualitatively compare the reconstruction method with matrix representation methods. In addition, we use other signal transformation tools such as the fast Fourier transform, and short-time Fourier transform and then explain the advantages of scalogram classification in the terms of time-frequency resolution trade-off issue.
期刊介绍:
Journal of Computational Design and Engineering is an international journal that aims to provide academia and industry with a venue for rapid publication of research papers reporting innovative computational methods and applications to achieve a major breakthrough, practical improvements, and bold new research directions within a wide range of design and engineering:
• Theory and its progress in computational advancement for design and engineering
• Development of computational framework to support large scale design and engineering
• Interaction issues among human, designed artifacts, and systems
• Knowledge-intensive technologies for intelligent and sustainable systems
• Emerging technology and convergence of technology fields presented with convincing design examples
• Educational issues for academia, practitioners, and future generation
• Proposal on new research directions as well as survey and retrospectives on mature field.