{"title":"基于Lomax分布的自适应渐进式混合截尾数据的统计分析","authors":"Amal Helu, Hani Samawi","doi":"10.19139/soic-2310-5070-1330","DOIUrl":null,"url":null,"abstract":"In this article, we consider statistical inferences about the unknown parameters of the Lomax distribution basedon the Adaptive Type-II Progressive Hybrid censoring scheme, this scheme can save both the total test time and the cost induced by the failure of the units and increases the efficiency of statistical analysis. The estimation of the parameters is derived using the maximum likelihood (MLE) and the Bayesian procedures. The Bayesian estimators are obtained based on the symmetric and asymmetric loss functions. There are no explicit forms for the Bayesian estimators, therefore, we propose Lindley’s approximation method to compute the Bayesian estimators. A comparison between these estimators is provided by using extensive simulation. A real-life data example is provided to illustrate our proposed estimators.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Statistical Analysis Based on Adaptive Progressive Hybrid Censored Data From Lomax Distribution\",\"authors\":\"Amal Helu, Hani Samawi\",\"doi\":\"10.19139/soic-2310-5070-1330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we consider statistical inferences about the unknown parameters of the Lomax distribution basedon the Adaptive Type-II Progressive Hybrid censoring scheme, this scheme can save both the total test time and the cost induced by the failure of the units and increases the efficiency of statistical analysis. The estimation of the parameters is derived using the maximum likelihood (MLE) and the Bayesian procedures. The Bayesian estimators are obtained based on the symmetric and asymmetric loss functions. There are no explicit forms for the Bayesian estimators, therefore, we propose Lindley’s approximation method to compute the Bayesian estimators. A comparison between these estimators is provided by using extensive simulation. A real-life data example is provided to illustrate our proposed estimators.\",\"PeriodicalId\":93376,\"journal\":{\"name\":\"Statistics, optimization & information computing\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, optimization & information computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/soic-2310-5070-1330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Statistical Analysis Based on Adaptive Progressive Hybrid Censored Data From Lomax Distribution
In this article, we consider statistical inferences about the unknown parameters of the Lomax distribution basedon the Adaptive Type-II Progressive Hybrid censoring scheme, this scheme can save both the total test time and the cost induced by the failure of the units and increases the efficiency of statistical analysis. The estimation of the parameters is derived using the maximum likelihood (MLE) and the Bayesian procedures. The Bayesian estimators are obtained based on the symmetric and asymmetric loss functions. There are no explicit forms for the Bayesian estimators, therefore, we propose Lindley’s approximation method to compute the Bayesian estimators. A comparison between these estimators is provided by using extensive simulation. A real-life data example is provided to illustrate our proposed estimators.