颅骨剥离使用传统和软计算方法的磁共振图像:半系统的荟萃分析

H. Azam, Humera Tariq
{"title":"颅骨剥离使用传统和软计算方法的磁共振图像:半系统的荟萃分析","authors":"H. Azam, Humera Tariq","doi":"10.22630/mgv.2020.29.1.3","DOIUrl":null,"url":null,"abstract":"MRI scanner captures the skull along with the brain and the skull needs to be removed for enhanced reliability and validity of medical diagnostic practices. Skull Stripping from Brain MR Images is significantly a core area in medical applications. It is a complicated task to segment an image for skull stripping manually. It is not only time consuming but expensive as well. An automated skull stripping method with good efficiency and effectiveness is required. Currently, a number of skull stripping methods are used in practice. In this review paper, many soft-computing segmentation techniques have been discussed. The purpose of this research study is to review the existing literature to compare the existing traditional and modern methods used for skull stripping from Brain MR images along with their merits and demerits. The semi-systematic review of existing literature has been carried out using the meta-synthesis approach. Broadly, analyses are bifurcated into traditional and modern, i.e. soft-computing methods proposed, experimented with, or applied in practice for effective skull stripping. Popular databases with desired data of Brain MR Images have also been identified, categorized and discussed. Moreover, CPU and GPU based computer systems and their specifications used by different researchers for skull stripping have also been discussed. In the end, the research gap has been identified along with the proposed lead for future research work.","PeriodicalId":39750,"journal":{"name":"Machine Graphics and Vision","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Skull stripping using traditional and soft-computing approaches for Magnetic Resonance images: A semi-systematic meta-analysis\",\"authors\":\"H. Azam, Humera Tariq\",\"doi\":\"10.22630/mgv.2020.29.1.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MRI scanner captures the skull along with the brain and the skull needs to be removed for enhanced reliability and validity of medical diagnostic practices. Skull Stripping from Brain MR Images is significantly a core area in medical applications. It is a complicated task to segment an image for skull stripping manually. It is not only time consuming but expensive as well. An automated skull stripping method with good efficiency and effectiveness is required. Currently, a number of skull stripping methods are used in practice. In this review paper, many soft-computing segmentation techniques have been discussed. The purpose of this research study is to review the existing literature to compare the existing traditional and modern methods used for skull stripping from Brain MR images along with their merits and demerits. The semi-systematic review of existing literature has been carried out using the meta-synthesis approach. Broadly, analyses are bifurcated into traditional and modern, i.e. soft-computing methods proposed, experimented with, or applied in practice for effective skull stripping. Popular databases with desired data of Brain MR Images have also been identified, categorized and discussed. Moreover, CPU and GPU based computer systems and their specifications used by different researchers for skull stripping have also been discussed. In the end, the research gap has been identified along with the proposed lead for future research work.\",\"PeriodicalId\":39750,\"journal\":{\"name\":\"Machine Graphics and Vision\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Graphics and Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22630/mgv.2020.29.1.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Graphics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/mgv.2020.29.1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

MRI扫描仪捕获颅骨和大脑,需要移除颅骨以提高医疗诊断实践的可靠性和有效性。从脑磁共振图像中剥离颅骨是医学应用中的一个重要核心领域。人工分割颅骨剥离图像是一项复杂的任务。它不仅费时而且昂贵。需要一种效率高、效果好的自动颅骨剥离方法。目前,临床上应用的颅骨剥离方法有多种。在这篇综述中,讨论了许多软计算分割技术。本研究的目的是回顾现有的文献,比较现有的传统和现代的颅骨剥离方法,以及它们的优缺点。运用元综合方法对现有文献进行了半系统的综述。从广义上讲,分析分为传统和现代,即软计算方法提出,实验,或应用于实践中有效的颅骨剥离。此外,还对具有所需脑磁共振图像数据的流行数据库进行了识别、分类和讨论。此外,还讨论了不同研究人员用于颅骨剥离的基于CPU和GPU的计算机系统及其规格。最后,确定了研究差距,并提出了未来研究工作的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Skull stripping using traditional and soft-computing approaches for Magnetic Resonance images: A semi-systematic meta-analysis
MRI scanner captures the skull along with the brain and the skull needs to be removed for enhanced reliability and validity of medical diagnostic practices. Skull Stripping from Brain MR Images is significantly a core area in medical applications. It is a complicated task to segment an image for skull stripping manually. It is not only time consuming but expensive as well. An automated skull stripping method with good efficiency and effectiveness is required. Currently, a number of skull stripping methods are used in practice. In this review paper, many soft-computing segmentation techniques have been discussed. The purpose of this research study is to review the existing literature to compare the existing traditional and modern methods used for skull stripping from Brain MR images along with their merits and demerits. The semi-systematic review of existing literature has been carried out using the meta-synthesis approach. Broadly, analyses are bifurcated into traditional and modern, i.e. soft-computing methods proposed, experimented with, or applied in practice for effective skull stripping. Popular databases with desired data of Brain MR Images have also been identified, categorized and discussed. Moreover, CPU and GPU based computer systems and their specifications used by different researchers for skull stripping have also been discussed. In the end, the research gap has been identified along with the proposed lead for future research work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Graphics and Vision
Machine Graphics and Vision Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
0.40
自引率
0.00%
发文量
1
期刊介绍: Machine GRAPHICS & VISION (MGV) is a refereed international journal, published quarterly, providing a scientific exchange forum and an authoritative source of information in the field of, in general, pictorial information exchange between computers and their environment, including applications of visual and graphical computer systems. The journal concentrates on theoretical and computational models underlying computer generated, analysed, or otherwise processed imagery, in particular: - image processing - scene analysis, modeling, and understanding - machine vision - pattern matching and pattern recognition - image synthesis, including three-dimensional imaging and solid modeling
期刊最新文献
Use of virtual reality to facilitate engineer training in the aerospace industry An efficient pedestrian attributes recognition system under challenging conditions Performance evaluation of Machine Learning models to predict heart attack Lung and colon cancer detection from CT images using Deep Learning Riesz-Laplace Wavelet Transform and PCNN Based Image Fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1