智能交通管理:挑战、解决方案和未来展望综述

IF 1.1 Q3 TRANSPORTATION SCIENCE & TECHNOLOGY Transport and Telecommunication Journal Pub Date : 2021-04-01 DOI:10.2478/ttj-2021-0013
Roopa Ravish, S. R. Swamy
{"title":"智能交通管理:挑战、解决方案和未来展望综述","authors":"Roopa Ravish, S. R. Swamy","doi":"10.2478/ttj-2021-0013","DOIUrl":null,"url":null,"abstract":"Abstract Recent years have witnessed a colossal increase of vehicles on the roads; unfortunately, the infrastructure of roads and traffic systems has not kept pace with this growth, resulting in inefficient traffic management. Owing to this imbalance, traffic jams on roads, congestions, and pollution have shown a marked increase. The management of growing traffic is a major issue across the world. Intelligent Transportation Systems (ITS) have a great potential in offering solutions to such issues by using novel technologies. In this review, the ITS-based solutions for traffic management and control have been categorized as traffic data collection solutions, traffic management solutions, congestion avoidance solutions, and travel time prediction solutions. The solutions have been presented along with their underlying technologies, advantages, and drawbacks. First, important solutions for collecting traffic-related data and road conditions are discussed. Next, ITS solutions for the effective management of traffic are presented. Third, key strategies based on machine learning and computational intelligence for avoiding congestion are outlined. Fourth, important solutions for accurately predicting travel time are presented. Finally, avenues for future work in these areas are discussed.","PeriodicalId":44110,"journal":{"name":"Transport and Telecommunication Journal","volume":"9 1","pages":"163 - 182"},"PeriodicalIF":1.1000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Intelligent Traffic Management: A Review of Challenges, Solutions, and Future Perspectives\",\"authors\":\"Roopa Ravish, S. R. Swamy\",\"doi\":\"10.2478/ttj-2021-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recent years have witnessed a colossal increase of vehicles on the roads; unfortunately, the infrastructure of roads and traffic systems has not kept pace with this growth, resulting in inefficient traffic management. Owing to this imbalance, traffic jams on roads, congestions, and pollution have shown a marked increase. The management of growing traffic is a major issue across the world. Intelligent Transportation Systems (ITS) have a great potential in offering solutions to such issues by using novel technologies. In this review, the ITS-based solutions for traffic management and control have been categorized as traffic data collection solutions, traffic management solutions, congestion avoidance solutions, and travel time prediction solutions. The solutions have been presented along with their underlying technologies, advantages, and drawbacks. First, important solutions for collecting traffic-related data and road conditions are discussed. Next, ITS solutions for the effective management of traffic are presented. Third, key strategies based on machine learning and computational intelligence for avoiding congestion are outlined. Fourth, important solutions for accurately predicting travel time are presented. Finally, avenues for future work in these areas are discussed.\",\"PeriodicalId\":44110,\"journal\":{\"name\":\"Transport and Telecommunication Journal\",\"volume\":\"9 1\",\"pages\":\"163 - 182\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport and Telecommunication Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ttj-2021-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport and Telecommunication Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ttj-2021-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 10

摘要

近年来,道路上的车辆急剧增加;不幸的是,道路和交通系统的基础设施没有跟上这种增长的步伐,导致交通管理效率低下。由于这种不平衡,道路上的交通堵塞、拥挤和污染明显增加。管理日益增长的交通是全世界的一个主要问题。智能交通系统(ITS)在利用新技术解决这些问题方面具有巨大的潜力。本文将基于its的交通管理和控制解决方案分为交通数据收集解决方案、交通管理解决方案、拥堵避免解决方案和出行时间预测解决方案。介绍了这些解决方案以及它们的底层技术、优点和缺点。首先,讨论了收集交通相关数据和道路状况的重要解决方案。接下来,提出了有效管理交通的ITS解决方案。第三,概述了基于机器学习和计算智能的避免拥塞的关键策略。第四,提出了准确预测旅行时间的重要解决方案。最后,讨论了今后在这些领域开展工作的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent Traffic Management: A Review of Challenges, Solutions, and Future Perspectives
Abstract Recent years have witnessed a colossal increase of vehicles on the roads; unfortunately, the infrastructure of roads and traffic systems has not kept pace with this growth, resulting in inefficient traffic management. Owing to this imbalance, traffic jams on roads, congestions, and pollution have shown a marked increase. The management of growing traffic is a major issue across the world. Intelligent Transportation Systems (ITS) have a great potential in offering solutions to such issues by using novel technologies. In this review, the ITS-based solutions for traffic management and control have been categorized as traffic data collection solutions, traffic management solutions, congestion avoidance solutions, and travel time prediction solutions. The solutions have been presented along with their underlying technologies, advantages, and drawbacks. First, important solutions for collecting traffic-related data and road conditions are discussed. Next, ITS solutions for the effective management of traffic are presented. Third, key strategies based on machine learning and computational intelligence for avoiding congestion are outlined. Fourth, important solutions for accurately predicting travel time are presented. Finally, avenues for future work in these areas are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transport and Telecommunication Journal
Transport and Telecommunication Journal TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
3.00
自引率
0.00%
发文量
21
审稿时长
35 weeks
期刊最新文献
Scripting Scenarios of Pedestrian Behavior in a Computer Simulator of Security Monitoring System: A Practitioner’s Perspective Phantomatic Road Works in Poland: A View from a Dashboard Cam Development and Practical Application of Hybrid Decision-Making Model for Selection of Third-Party Logistics Service Providers Analysing Distribution Approaches for Efficient Urban Logistics Optimizing Voyage Costs in Maritime Supply Chains: A Holistic Approach Towards Logistics Service Improvement and Supply Chain Finance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1