严格循环序列的最优算法

IF 1.9 Q1 MATHEMATICS, APPLIED SIAM journal on mathematics of data science Pub Date : 2021-01-01 DOI:10.1137/21m139356x
Santiago Armstrong, Crist'obal Guzm'an, C. Sing-Long
{"title":"严格循环序列的最优算法","authors":"Santiago Armstrong, Crist'obal Guzm'an, C. Sing-Long","doi":"10.1137/21m139356x","DOIUrl":null,"url":null,"abstract":"We study the problem of circular seriation, where we are given a matrix of pairwise dissimilarities between $n$ objects, and the goal is to find a {\\em circular order} of the objects in a manner that is consistent with their dissimilarity. This problem is a generalization of the classical {\\em linear seriation} problem where the goal is to find a {\\em linear order}, and for which optimal ${\\cal O}(n^2)$ algorithms are known. Our contributions can be summarized as follows. First, we introduce {\\em circular Robinson matrices} as the natural class of dissimilarity matrices for the circular seriation problem. Second, for the case of {\\em strict circular Robinson dissimilarity matrices} we provide an optimal ${\\cal O}(n^2)$ algorithm for the circular seriation problem. Finally, we propose a statistical model to analyze the well-posedness of the circular seriation problem for large $n$. In particular, we establish ${\\cal O}(\\log(n)/n)$ rates on the distance between any circular ordering found by solving the circular seriation problem to the underlying order of the model, in the Kendall-tau metric.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"25 1","pages":"1223-1250"},"PeriodicalIF":1.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Optimal Algorithm for Strict Circular Seriation\",\"authors\":\"Santiago Armstrong, Crist'obal Guzm'an, C. Sing-Long\",\"doi\":\"10.1137/21m139356x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of circular seriation, where we are given a matrix of pairwise dissimilarities between $n$ objects, and the goal is to find a {\\\\em circular order} of the objects in a manner that is consistent with their dissimilarity. This problem is a generalization of the classical {\\\\em linear seriation} problem where the goal is to find a {\\\\em linear order}, and for which optimal ${\\\\cal O}(n^2)$ algorithms are known. Our contributions can be summarized as follows. First, we introduce {\\\\em circular Robinson matrices} as the natural class of dissimilarity matrices for the circular seriation problem. Second, for the case of {\\\\em strict circular Robinson dissimilarity matrices} we provide an optimal ${\\\\cal O}(n^2)$ algorithm for the circular seriation problem. Finally, we propose a statistical model to analyze the well-posedness of the circular seriation problem for large $n$. In particular, we establish ${\\\\cal O}(\\\\log(n)/n)$ rates on the distance between any circular ordering found by solving the circular seriation problem to the underlying order of the model, in the Kendall-tau metric.\",\"PeriodicalId\":74797,\"journal\":{\"name\":\"SIAM journal on mathematics of data science\",\"volume\":\"25 1\",\"pages\":\"1223-1250\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM journal on mathematics of data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m139356x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m139356x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

摘要

我们研究了圆序列问题,在这个问题中,我们给出了一个$n$对象之间的配对不相似度矩阵,目标是以与它们的不相似度一致的方式找到对象的{\em圆阶}。这个问题是经典的{\em线性序列化}问题的推广,其目标是找到一个{\em线性顺序},并且已知最优的${\cal O}(n^2)$算法。我们的贡献可以概括如下。首先,我们引入{\em圆形罗宾逊矩阵}作为圆形序列问题的不相似矩阵的自然类别。其次,对于{\em严格循环罗宾逊不相似矩阵}的情况,我们为循环序列化问题提供了一个最优的${\cal O}(n^2)$算法。最后,我们提出了一个统计模型来分析大$n$的圆序列问题的适定性。特别地,我们在Kendall-tau度量中建立了${\cal O}(\log(n)/n)$速率,该速率是通过解决循环序列化问题找到的任何循环顺序与模型底层顺序之间的距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Optimal Algorithm for Strict Circular Seriation
We study the problem of circular seriation, where we are given a matrix of pairwise dissimilarities between $n$ objects, and the goal is to find a {\em circular order} of the objects in a manner that is consistent with their dissimilarity. This problem is a generalization of the classical {\em linear seriation} problem where the goal is to find a {\em linear order}, and for which optimal ${\cal O}(n^2)$ algorithms are known. Our contributions can be summarized as follows. First, we introduce {\em circular Robinson matrices} as the natural class of dissimilarity matrices for the circular seriation problem. Second, for the case of {\em strict circular Robinson dissimilarity matrices} we provide an optimal ${\cal O}(n^2)$ algorithm for the circular seriation problem. Finally, we propose a statistical model to analyze the well-posedness of the circular seriation problem for large $n$. In particular, we establish ${\cal O}(\log(n)/n)$ rates on the distance between any circular ordering found by solving the circular seriation problem to the underlying order of the model, in the Kendall-tau metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entropic Optimal Transport on Random Graphs A Universal Trade-off Between the Model Size, Test Loss, and Training Loss of Linear Predictors Approximating Probability Distributions by Using Wasserstein Generative Adversarial Networks Adversarial Robustness of Sparse Local Lipschitz Predictors The GenCol Algorithm for High-Dimensional Optimal Transport: General Formulation and Application to Barycenters and Wasserstein Splines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1