混沌神经网络中的多频正弦波控制

Guoguang He, Chongchong Wang, Xiaoping Xie, Ping Zhu
{"title":"混沌神经网络中的多频正弦波控制","authors":"Guoguang He, Chongchong Wang, Xiaoping Xie, Ping Zhu","doi":"10.1109/IJCNN.2015.7280380","DOIUrl":null,"url":null,"abstract":"Brain waves are classified as gamma, beta, alpha, theta, and delta waves to quantify brain activity and can be approximated as sinusoidal waves of different frequencies. In this work, we use sinusoidal waves at two different frequencies to control chaos in a chaotic neural network (CNN) to explore the effect of multi-frequency sinusoidal waves in chaos control. We propose two methods to control chaos. In one, two sinusoidal wave signals are added to different groups of neurons. In the other, a control signal with a mixture of two sinusoidal waves with different frequencies is added to all neurons. The controlling dynamics differ in these two cases. A stable output sequence of the controlled CNN contains only one type of stored pattern and its reversed pattern, which are related to the initial pattern.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"476 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-frequency sinusoidal wave control in a chaotic neural network\",\"authors\":\"Guoguang He, Chongchong Wang, Xiaoping Xie, Ping Zhu\",\"doi\":\"10.1109/IJCNN.2015.7280380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain waves are classified as gamma, beta, alpha, theta, and delta waves to quantify brain activity and can be approximated as sinusoidal waves of different frequencies. In this work, we use sinusoidal waves at two different frequencies to control chaos in a chaotic neural network (CNN) to explore the effect of multi-frequency sinusoidal waves in chaos control. We propose two methods to control chaos. In one, two sinusoidal wave signals are added to different groups of neurons. In the other, a control signal with a mixture of two sinusoidal waves with different frequencies is added to all neurons. The controlling dynamics differ in these two cases. A stable output sequence of the controlled CNN contains only one type of stored pattern and its reversed pattern, which are related to the initial pattern.\",\"PeriodicalId\":6539,\"journal\":{\"name\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"476 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2015.7280380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

脑电波分为γ、β、α、θ和δ波,以量化大脑活动,可以近似为不同频率的正弦波。在本研究中,我们使用两种不同频率的正弦波来控制混沌神经网络(CNN)中的混沌,以探索多频率正弦波在混沌控制中的作用。我们提出了两种控制混沌的方法。其中一种是将两个正弦波信号加到不同的神经元组中。在另一种方法中,将两个不同频率的正弦波混合的控制信号添加到所有神经元中。在这两种情况下,控制动力学是不同的。被控CNN的稳定输出序列只包含一种类型的存储模式及其反向模式,它们与初始模式相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-frequency sinusoidal wave control in a chaotic neural network
Brain waves are classified as gamma, beta, alpha, theta, and delta waves to quantify brain activity and can be approximated as sinusoidal waves of different frequencies. In this work, we use sinusoidal waves at two different frequencies to control chaos in a chaotic neural network (CNN) to explore the effect of multi-frequency sinusoidal waves in chaos control. We propose two methods to control chaos. In one, two sinusoidal wave signals are added to different groups of neurons. In the other, a control signal with a mixture of two sinusoidal waves with different frequencies is added to all neurons. The controlling dynamics differ in these two cases. A stable output sequence of the controlled CNN contains only one type of stored pattern and its reversed pattern, which are related to the initial pattern.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient conformal regressors using bagged neural nets Repeated play of the SVM game as a means of adaptive classification Unit commitment considering multiple charging and discharging scenarios of plug-in electric vehicles High-dimensional function approximation using local linear embedding A label compression coding approach through maximizing dependence between features and labels for multi-label classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1