时空自适应处理的功率和性能权衡

Nitin Gawande, J. Manzano, Antonino Tumeo, Nathan R. Tallent, D. Kerbyson, A. Hoisie
{"title":"时空自适应处理的功率和性能权衡","authors":"Nitin Gawande, J. Manzano, Antonino Tumeo, Nathan R. Tallent, D. Kerbyson, A. Hoisie","doi":"10.1109/ASAP.2015.7245703","DOIUrl":null,"url":null,"abstract":"Power efficiency - performance relative to power - is one of the most important concerns when designing RADAR processing systems. This paper analyzes power and performance trade-offs for a typical Space Time Adaptive Processing (STAP) application. We study STAP implementations for CUDA and OpenMP on two architectures, Intel Haswell Core I7-4770TE and NVIDIA Kayla with a GK208 GPU. We analyze the power and performance of STAP's computationally intensive kernels across the two hardware testbeds. We discuss an efficient parallel implementation for the Haswell CPU architecture. We also show the impact and trade-offs of GPU optimization techniques. The GPU architecture is able to process large size data sets without increase in power requirement. The use of shared memory has a significant impact on the power requirement for the GPU. Finally, we show that a balance between the use of shared memory and main memory access leads to an improved performance in a typical STAP application.","PeriodicalId":6642,"journal":{"name":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","volume":"46 1","pages":"41-48"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Power and performance trade-offs for Space Time Adaptive Processing\",\"authors\":\"Nitin Gawande, J. Manzano, Antonino Tumeo, Nathan R. Tallent, D. Kerbyson, A. Hoisie\",\"doi\":\"10.1109/ASAP.2015.7245703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power efficiency - performance relative to power - is one of the most important concerns when designing RADAR processing systems. This paper analyzes power and performance trade-offs for a typical Space Time Adaptive Processing (STAP) application. We study STAP implementations for CUDA and OpenMP on two architectures, Intel Haswell Core I7-4770TE and NVIDIA Kayla with a GK208 GPU. We analyze the power and performance of STAP's computationally intensive kernels across the two hardware testbeds. We discuss an efficient parallel implementation for the Haswell CPU architecture. We also show the impact and trade-offs of GPU optimization techniques. The GPU architecture is able to process large size data sets without increase in power requirement. The use of shared memory has a significant impact on the power requirement for the GPU. Finally, we show that a balance between the use of shared memory and main memory access leads to an improved performance in a typical STAP application.\",\"PeriodicalId\":6642,\"journal\":{\"name\":\"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)\",\"volume\":\"46 1\",\"pages\":\"41-48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAP.2015.7245703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2015.7245703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

功率效率-相对于功率的性能-是设计雷达处理系统时最重要的关注点之一。本文分析了典型的时空自适应处理(STAP)应用的功耗和性能权衡。我们研究了CUDA和OpenMP在两种架构上的STAP实现,Intel Haswell Core I7-4770TE和NVIDIA Kayla与GK208 GPU。我们在两个硬件测试平台上分析了STAP计算密集型内核的功率和性能。我们讨论了Haswell CPU架构的高效并行实现。我们还展示了GPU优化技术的影响和权衡。GPU架构能够在不增加功耗需求的情况下处理大型数据集。共享内存的使用对GPU的电源需求有很大的影响。最后,我们展示了在典型的STAP应用程序中,使用共享内存和访问主内存之间的平衡可以提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power and performance trade-offs for Space Time Adaptive Processing
Power efficiency - performance relative to power - is one of the most important concerns when designing RADAR processing systems. This paper analyzes power and performance trade-offs for a typical Space Time Adaptive Processing (STAP) application. We study STAP implementations for CUDA and OpenMP on two architectures, Intel Haswell Core I7-4770TE and NVIDIA Kayla with a GK208 GPU. We analyze the power and performance of STAP's computationally intensive kernels across the two hardware testbeds. We discuss an efficient parallel implementation for the Haswell CPU architecture. We also show the impact and trade-offs of GPU optimization techniques. The GPU architecture is able to process large size data sets without increase in power requirement. The use of shared memory has a significant impact on the power requirement for the GPU. Finally, we show that a balance between the use of shared memory and main memory access leads to an improved performance in a typical STAP application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the Conference Chairs - ASAP 2020 Message from the ASAP 2016 chairs An IEEE 754 double-precision floating-point multiplier for denormalized and normalized floating-point numbers Application-set driven exploration for custom processor architectures Stochastic circuit design and performance evaluation of vector quantization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1