基于抖动采样和加权α-形状的局部特征检测

Christos Varytimidis, Konstantinos Rapantzikos, Yannis Avrithis, S. Kollias
{"title":"基于抖动采样和加权α-形状的局部特征检测","authors":"Christos Varytimidis, Konstantinos Rapantzikos, Yannis Avrithis, S. Kollias","doi":"10.2197/ipsjtcva.7.189","DOIUrl":null,"url":null,"abstract":"Local feature detection has been an essential part of many methods for computer vision applications like large scale image retrieval, object detection, or tracking. Recently, structure-guided feature detectors have been proposed, exploiting image edges to accurately capture local shape. Among them, the WαSH detector [Varytimidis et al., 2012] starts from sampling binary edges and exploits α-shapes, a computational geometry representation that describes local shape in different scales. In this work, we propose a novel image sampling method, based on dithering smooth image functions other than intensity. Samples are extracted on image contours representing the underlying shapes, with sampling density determined by image functions like the gradient or Hessian response, rather than being fixed. We thoroughly evaluate the parameters of the method, and achieve state-of-the-art performance on a series of matching and retrieval experiments.","PeriodicalId":38957,"journal":{"name":"IPSJ Transactions on Computer Vision and Applications","volume":"4 1","pages":"189-200"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dithering-based Sampling and Weighted α-shapes for Local Feature Detection\",\"authors\":\"Christos Varytimidis, Konstantinos Rapantzikos, Yannis Avrithis, S. Kollias\",\"doi\":\"10.2197/ipsjtcva.7.189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local feature detection has been an essential part of many methods for computer vision applications like large scale image retrieval, object detection, or tracking. Recently, structure-guided feature detectors have been proposed, exploiting image edges to accurately capture local shape. Among them, the WαSH detector [Varytimidis et al., 2012] starts from sampling binary edges and exploits α-shapes, a computational geometry representation that describes local shape in different scales. In this work, we propose a novel image sampling method, based on dithering smooth image functions other than intensity. Samples are extracted on image contours representing the underlying shapes, with sampling density determined by image functions like the gradient or Hessian response, rather than being fixed. We thoroughly evaluate the parameters of the method, and achieve state-of-the-art performance on a series of matching and retrieval experiments.\",\"PeriodicalId\":38957,\"journal\":{\"name\":\"IPSJ Transactions on Computer Vision and Applications\",\"volume\":\"4 1\",\"pages\":\"189-200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPSJ Transactions on Computer Vision and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/ipsjtcva.7.189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSJ Transactions on Computer Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/ipsjtcva.7.189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

局部特征检测已经成为许多计算机视觉应用方法的重要组成部分,如大规模图像检索、目标检测或跟踪。近年来,人们提出了结构引导特征检测器,利用图像边缘来精确捕获局部形状。其中,WαSH探测器[Varytimidis等人,2012]从二进制边缘采样开始,利用α-形状,这是一种描述不同尺度局部形状的计算几何表示。在这项工作中,我们提出了一种新的图像采样方法,基于抖动平滑图像函数而不是强度。样本是在代表底层形状的图像轮廓上提取的,采样密度由梯度或Hessian响应等图像函数决定,而不是固定的。我们全面评估了该方法的参数,并在一系列匹配和检索实验中取得了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dithering-based Sampling and Weighted α-shapes for Local Feature Detection
Local feature detection has been an essential part of many methods for computer vision applications like large scale image retrieval, object detection, or tracking. Recently, structure-guided feature detectors have been proposed, exploiting image edges to accurately capture local shape. Among them, the WαSH detector [Varytimidis et al., 2012] starts from sampling binary edges and exploits α-shapes, a computational geometry representation that describes local shape in different scales. In this work, we propose a novel image sampling method, based on dithering smooth image functions other than intensity. Samples are extracted on image contours representing the underlying shapes, with sampling density determined by image functions like the gradient or Hessian response, rather than being fixed. We thoroughly evaluate the parameters of the method, and achieve state-of-the-art performance on a series of matching and retrieval experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IPSJ Transactions on Computer Vision and Applications
IPSJ Transactions on Computer Vision and Applications Computer Science-Computer Vision and Pattern Recognition
自引率
0.00%
发文量
0
期刊最新文献
3D human pose estimation model using location-maps for distorted and disconnected images by a wearable omnidirectional camera Application of evolutionary and swarm optimization in computer vision: a literature survey Pseudo-labelling-aided semantic segmentation on sparsely annotated 3D point clouds Phase disambiguation using spatio-temporally modulated illumination in depth sensing Deep learning-based strategies for the detection and tracking of drones using several cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1