骨组织工程中仿生微结构的增材制造

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL Experimental Techniques Pub Date : 2023-02-14 DOI:10.1007/s40799-023-00630-8
N. Top, H. Gökçe, I. Şahin
{"title":"骨组织工程中仿生微结构的增材制造","authors":"N. Top,&nbsp;H. Gökçe,&nbsp;I. Şahin","doi":"10.1007/s40799-023-00630-8","DOIUrl":null,"url":null,"abstract":"<div><h2>Abstract\n</h2><div><p>Bone Tissue Engineering (BTE) focuses on restoring tissues that have lost their function due to disease or trauma. Porous artificial scaffolds are used in order to restore the structural functions of bone tissues. In recent years, Additive Manufacturing (AM) technologies that can be integrated into Computer-Aided Design (CAD) software have shown great potential in this field. The use of AM technologies in the production of bone scaffolds made it possible to construct structures with appropriate mechanical properties and different configurations. In this study, artificial bone scaffolds designed using bio-inspired geometries and Computer-Aided System for Tissue Scaffolds (CASTS) library were printed by Fused Deposition Modeling (FDM) method using Acrylonitrile Butadiene Styrene (ABS) and Polylactic Acid (PLA) materials. The aim of this study is to investigate the effects of bone scaffolds created with bio-inspired microstructures on dimensional accuracy, weight, mechanical performance, structural strength, porosity and pore size. According to the test results, PLA printed scaffolds have better results than ABS printed scaffolds in terms of dimensional accuracy, porosity, pore diameter and weight. Among the PLA-printed scaffolds, the high pore diameter of the scutoid geometry resulted in low mechanical strength. In terms of porosity, the icosahedron geometry gave better results than the cubic structure. Therefore, PLA-printed icosahedron geometry can be considered as the most suitable scaffold type for bone tissue regeneration.</p></div></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"47 6","pages":"1213 - 1227"},"PeriodicalIF":1.5000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Additive Manufacturing of Bio-Inspired Microstructures for Bone Tissue Engineering\",\"authors\":\"N. Top,&nbsp;H. Gökçe,&nbsp;I. Şahin\",\"doi\":\"10.1007/s40799-023-00630-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Abstract\\n</h2><div><p>Bone Tissue Engineering (BTE) focuses on restoring tissues that have lost their function due to disease or trauma. Porous artificial scaffolds are used in order to restore the structural functions of bone tissues. In recent years, Additive Manufacturing (AM) technologies that can be integrated into Computer-Aided Design (CAD) software have shown great potential in this field. The use of AM technologies in the production of bone scaffolds made it possible to construct structures with appropriate mechanical properties and different configurations. In this study, artificial bone scaffolds designed using bio-inspired geometries and Computer-Aided System for Tissue Scaffolds (CASTS) library were printed by Fused Deposition Modeling (FDM) method using Acrylonitrile Butadiene Styrene (ABS) and Polylactic Acid (PLA) materials. The aim of this study is to investigate the effects of bone scaffolds created with bio-inspired microstructures on dimensional accuracy, weight, mechanical performance, structural strength, porosity and pore size. According to the test results, PLA printed scaffolds have better results than ABS printed scaffolds in terms of dimensional accuracy, porosity, pore diameter and weight. Among the PLA-printed scaffolds, the high pore diameter of the scutoid geometry resulted in low mechanical strength. In terms of porosity, the icosahedron geometry gave better results than the cubic structure. Therefore, PLA-printed icosahedron geometry can be considered as the most suitable scaffold type for bone tissue regeneration.</p></div></div>\",\"PeriodicalId\":553,\"journal\":{\"name\":\"Experimental Techniques\",\"volume\":\"47 6\",\"pages\":\"1213 - 1227\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Techniques\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40799-023-00630-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Techniques","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40799-023-00630-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要骨组织工程(bone Tissue Engineering, BTE)的研究重点是修复因疾病或创伤而失去功能的组织。多孔人工支架用于修复骨组织的结构功能。近年来,可集成到计算机辅助设计(CAD)软件中的增材制造(AM)技术在该领域显示出巨大的潜力。在骨支架的生产中使用增材制造技术,可以构建具有适当机械性能和不同配置的结构。在本研究中,采用仿生几何设计和计算机辅助组织支架系统(cast)库设计人工骨支架,采用丙烯腈-丁二烯-苯乙烯(ABS)和聚乳酸(PLA)材料,采用熔融沉积建模(FDM)方法进行打印。本研究的目的是研究用仿生微结构制造的骨支架对尺寸精度、重量、机械性能、结构强度、孔隙率和孔径的影响。测试结果表明,PLA打印支架在尺寸精度、孔隙率、孔径、重量等方面均优于ABS打印支架。在pla打印的支架中,scudroid几何体的大孔径导致机械强度较低。在孔隙度方面,二十面体结构比立方结构具有更好的效果。因此,pla打印的二十面体几何结构可以被认为是最适合骨组织再生的支架类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Additive Manufacturing of Bio-Inspired Microstructures for Bone Tissue Engineering

Abstract

Bone Tissue Engineering (BTE) focuses on restoring tissues that have lost their function due to disease or trauma. Porous artificial scaffolds are used in order to restore the structural functions of bone tissues. In recent years, Additive Manufacturing (AM) technologies that can be integrated into Computer-Aided Design (CAD) software have shown great potential in this field. The use of AM technologies in the production of bone scaffolds made it possible to construct structures with appropriate mechanical properties and different configurations. In this study, artificial bone scaffolds designed using bio-inspired geometries and Computer-Aided System for Tissue Scaffolds (CASTS) library were printed by Fused Deposition Modeling (FDM) method using Acrylonitrile Butadiene Styrene (ABS) and Polylactic Acid (PLA) materials. The aim of this study is to investigate the effects of bone scaffolds created with bio-inspired microstructures on dimensional accuracy, weight, mechanical performance, structural strength, porosity and pore size. According to the test results, PLA printed scaffolds have better results than ABS printed scaffolds in terms of dimensional accuracy, porosity, pore diameter and weight. Among the PLA-printed scaffolds, the high pore diameter of the scutoid geometry resulted in low mechanical strength. In terms of porosity, the icosahedron geometry gave better results than the cubic structure. Therefore, PLA-printed icosahedron geometry can be considered as the most suitable scaffold type for bone tissue regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Techniques
Experimental Techniques 工程技术-材料科学:表征与测试
CiteScore
3.50
自引率
6.20%
发文量
88
审稿时长
5.2 months
期刊介绍: Experimental Techniques is a bimonthly interdisciplinary publication of the Society for Experimental Mechanics focusing on the development, application and tutorial of experimental mechanics techniques. The purpose for Experimental Techniques is to promote pedagogical, technical and practical advancements in experimental mechanics while supporting the Society''s mission and commitment to interdisciplinary application, research and development, education, and active promotion of experimental methods to: - Increase the knowledge of physical phenomena - Further the understanding of the behavior of materials, structures, and systems - Provide the necessary physical observations necessary to improve and assess new analytical and computational approaches.
期刊最新文献
On the Cover: Identification of Lightning Strike Damage Severity Using Pulse Thermography Through Integration of Thermal Data A Note of Gratitude from the Editor-in-Chief On the Cover: Study on Velocity Distribution on Cross-Section Flow of T-Shunt Reconstruction of Unsteady Lift Force Measurements Using Non-Dimensional Scaling Optimization Surface Microstructure Evolution and Mechanical Property Investigation of Inconel 718 Alloy Using Multiple Trimmings and WEDM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1