Bo Wang, Huachao Sun, Huang Lanying, Sheng-dong Liu, Biao Jin, Heng Zhang, Zhang Zhendong, Xin Ding, Qiu Wanyong, Shengcheng Wang
{"title":"煤巷围岩松动圈周边小断层波场特征","authors":"Bo Wang, Huachao Sun, Huang Lanying, Sheng-dong Liu, Biao Jin, Heng Zhang, Zhang Zhendong, Xin Ding, Qiu Wanyong, Shengcheng Wang","doi":"10.2113/JEEG19-073","DOIUrl":null,"url":null,"abstract":"The geological conditions of coal roadway excavation are complicated. Seismic advanced detection is strongly influenced by the loose circle of fractured rock surrounding the competent coal seam. However, the three-dimensional wave field characteristics of small fault advanced detection in the condition of the loose circle of coal roadway have not examined. In this paper, numerical modeling and field tests were conducted to address this knowledge gap. The results indicate that when a seismic source near the tunnel face is excited, the body waves and a Love channel wave propagate in the tunneling direction toward the small fault, then produces reflected body waves whose amplitude is relatively weak, and a reflected Love channel wave whose amplitude is relatively strong. When reflected body waves and the reflected Love channel wave enter the loose circle of surrounding rock, the former's signal is unrecognizable in seismic record; but the latter converts to a Love wave whose amplitude is strong in the loose circle of coal seam. The Love wave which has a large interval from other wave trains in the time domain is easily recognizable in seismic record, which makes it suitable for advanced detection of small fault. The signal-to-noise ratio of seismic record of X component is higher than those of Y component and Z component.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"50 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Wave Field Characteristics of Small Faults around the Loose Circle of Rock Surrounding a Coal Roadway\",\"authors\":\"Bo Wang, Huachao Sun, Huang Lanying, Sheng-dong Liu, Biao Jin, Heng Zhang, Zhang Zhendong, Xin Ding, Qiu Wanyong, Shengcheng Wang\",\"doi\":\"10.2113/JEEG19-073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The geological conditions of coal roadway excavation are complicated. Seismic advanced detection is strongly influenced by the loose circle of fractured rock surrounding the competent coal seam. However, the three-dimensional wave field characteristics of small fault advanced detection in the condition of the loose circle of coal roadway have not examined. In this paper, numerical modeling and field tests were conducted to address this knowledge gap. The results indicate that when a seismic source near the tunnel face is excited, the body waves and a Love channel wave propagate in the tunneling direction toward the small fault, then produces reflected body waves whose amplitude is relatively weak, and a reflected Love channel wave whose amplitude is relatively strong. When reflected body waves and the reflected Love channel wave enter the loose circle of surrounding rock, the former's signal is unrecognizable in seismic record; but the latter converts to a Love wave whose amplitude is strong in the loose circle of coal seam. The Love wave which has a large interval from other wave trains in the time domain is easily recognizable in seismic record, which makes it suitable for advanced detection of small fault. The signal-to-noise ratio of seismic record of X component is higher than those of Y component and Z component.\",\"PeriodicalId\":15748,\"journal\":{\"name\":\"Journal of Environmental and Engineering Geophysics\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental and Engineering Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2113/JEEG19-073\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental and Engineering Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2113/JEEG19-073","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Wave Field Characteristics of Small Faults around the Loose Circle of Rock Surrounding a Coal Roadway
The geological conditions of coal roadway excavation are complicated. Seismic advanced detection is strongly influenced by the loose circle of fractured rock surrounding the competent coal seam. However, the three-dimensional wave field characteristics of small fault advanced detection in the condition of the loose circle of coal roadway have not examined. In this paper, numerical modeling and field tests were conducted to address this knowledge gap. The results indicate that when a seismic source near the tunnel face is excited, the body waves and a Love channel wave propagate in the tunneling direction toward the small fault, then produces reflected body waves whose amplitude is relatively weak, and a reflected Love channel wave whose amplitude is relatively strong. When reflected body waves and the reflected Love channel wave enter the loose circle of surrounding rock, the former's signal is unrecognizable in seismic record; but the latter converts to a Love wave whose amplitude is strong in the loose circle of coal seam. The Love wave which has a large interval from other wave trains in the time domain is easily recognizable in seismic record, which makes it suitable for advanced detection of small fault. The signal-to-noise ratio of seismic record of X component is higher than those of Y component and Z component.
期刊介绍:
The JEEG (ISSN 1083-1363) is the peer-reviewed journal of the Environmental and Engineering Geophysical Society (EEGS). JEEG welcomes manuscripts on new developments in near-surface geophysics applied to environmental, engineering, and mining issues, as well as novel near-surface geophysics case histories and descriptions of new hardware aimed at the near-surface geophysics community.