{"title":"具有不同腿机构和动态步态的步行类人机器人设计方法","authors":"O. Bruneau, Fethi Ben Ouezdou, J. Fontaine","doi":"10.1115/imece2001/dsc-24624","DOIUrl":null,"url":null,"abstract":"\n This article describes a method to design humanoid robots and to generate their dynamic gaits. Firstly, the global design process which defines structures able to carry out dynamic locomotion tasks is explained. Secondly, a set of leg mechanisms are described to generate these tasks. The third section describes a method to produce intrinsic smooth motions for fest walking gaits of bipedal robots having different leg mechanisms. Finally, some simulation results are given.","PeriodicalId":90691,"journal":{"name":"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Approach for the Design of Walking Humanoid Robots Having Different Leg Mechanisms and Using Dynamic Gaits\",\"authors\":\"O. Bruneau, Fethi Ben Ouezdou, J. Fontaine\",\"doi\":\"10.1115/imece2001/dsc-24624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This article describes a method to design humanoid robots and to generate their dynamic gaits. Firstly, the global design process which defines structures able to carry out dynamic locomotion tasks is explained. Secondly, a set of leg mechanisms are described to generate these tasks. The third section describes a method to produce intrinsic smooth motions for fest walking gaits of bipedal robots having different leg mechanisms. Finally, some simulation results are given.\",\"PeriodicalId\":90691,\"journal\":{\"name\":\"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2001/dsc-24624\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ASME Dynamic Systems and Control Conference. ASME Dynamic Systems and Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/dsc-24624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Approach for the Design of Walking Humanoid Robots Having Different Leg Mechanisms and Using Dynamic Gaits
This article describes a method to design humanoid robots and to generate their dynamic gaits. Firstly, the global design process which defines structures able to carry out dynamic locomotion tasks is explained. Secondly, a set of leg mechanisms are described to generate these tasks. The third section describes a method to produce intrinsic smooth motions for fest walking gaits of bipedal robots having different leg mechanisms. Finally, some simulation results are given.