聚类标准差及其鉴别心房颤动的价值

F. Plesinger, I. Viscor, P. Nejedly, V. Bulkova, J. Halámek, P. Jurák
{"title":"聚类标准差及其鉴别心房颤动的价值","authors":"F. Plesinger, I. Viscor, P. Nejedly, V. Bulkova, J. Halámek, P. Jurák","doi":"10.23919/CinC49843.2019.9005759","DOIUrl":null,"url":null,"abstract":"Background: Atrial fibrillation (AF) is a dysfunction of heart atriums shown as irregular heart activity leading to a higher risk of heart failure. Since AF may occur episodically, it is usually diagnosed using ECG Holter recordings. However, the presence of other pathologies and noise makes the automated processing of ECG Holter recordings complicated. Here, we present a new feature to distinguish AF from sinus rhythm as well as from other pathologies: Clustered Standard Deviation (CSTD).Method: QRS complexes are extracted from the ECG signal, and inter-beat intervals (RR) are ordered by their length. Then, RR clusters are found and the mean RR value is computed for each RR cluster. CSTD is computed using a formula for standard deviation using cluster-specific mean values instead of a global mean.Results: CSTD was evaluated for 7,254 ECG segments from a private dataset (MDT company, Brno, Czechia), 60 seconds length, 1-lead, 250 Hz sampling frequency. CSTD showed high values for AF while remaining low for other pathologies and sinus rhythm. CSTD between AF and other classes showed AUC 0.95. For comparison, a standard deviation of RR intervals leads to AUC 0.65 due to its sensitivity to other pathologies. Test on public MIT-AFDB dataset shown AUC and AUPRC 0.98 and 0.97, respectively.","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"17 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustered Standard Deviation and Its Benefit to Identify Atrial Fibrillation\",\"authors\":\"F. Plesinger, I. Viscor, P. Nejedly, V. Bulkova, J. Halámek, P. Jurák\",\"doi\":\"10.23919/CinC49843.2019.9005759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Atrial fibrillation (AF) is a dysfunction of heart atriums shown as irregular heart activity leading to a higher risk of heart failure. Since AF may occur episodically, it is usually diagnosed using ECG Holter recordings. However, the presence of other pathologies and noise makes the automated processing of ECG Holter recordings complicated. Here, we present a new feature to distinguish AF from sinus rhythm as well as from other pathologies: Clustered Standard Deviation (CSTD).Method: QRS complexes are extracted from the ECG signal, and inter-beat intervals (RR) are ordered by their length. Then, RR clusters are found and the mean RR value is computed for each RR cluster. CSTD is computed using a formula for standard deviation using cluster-specific mean values instead of a global mean.Results: CSTD was evaluated for 7,254 ECG segments from a private dataset (MDT company, Brno, Czechia), 60 seconds length, 1-lead, 250 Hz sampling frequency. CSTD showed high values for AF while remaining low for other pathologies and sinus rhythm. CSTD between AF and other classes showed AUC 0.95. For comparison, a standard deviation of RR intervals leads to AUC 0.65 due to its sensitivity to other pathologies. Test on public MIT-AFDB dataset shown AUC and AUPRC 0.98 and 0.97, respectively.\",\"PeriodicalId\":6697,\"journal\":{\"name\":\"2019 Computing in Cardiology (CinC)\",\"volume\":\"17 1\",\"pages\":\"Page 1-Page 4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CinC49843.2019.9005759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CinC49843.2019.9005759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:心房颤动(AF)是一种心房功能障碍,表现为不规则的心脏活动,导致心力衰竭的风险更高。由于房颤可能是偶发的,因此通常使用心电图动态心电图来诊断。然而,其他病理和噪声的存在使得自动处理心电图动态电位记录变得复杂。在这里,我们提出了一个新的特征来区分心房颤动与窦性心律以及其他病理:聚类标准偏差(CSTD)。方法:从心电信号中提取QRS复合物,并按其长度排序。然后,找到RR聚类并计算每个RR聚类的平均RR值。CSTD的计算使用的是标准偏差公式,使用集群特定的平均值而不是全局平均值。结果:CSTD评估了来自私人数据集(MDT公司,Brno, Czechia)的7254个心电段,60秒长度,1导联,250 Hz采样频率。心房颤动的CSTD值较高,而其他病理和窦性心律的CSTD值较低。AF组与其他组间CSTD的AUC为0.95。相比之下,由于其对其他病理的敏感性,RR区间的标准差导致AUC为0.65。在MIT-AFDB公共数据集上的测试显示AUC和AUPRC分别为0.98和0.97。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clustered Standard Deviation and Its Benefit to Identify Atrial Fibrillation
Background: Atrial fibrillation (AF) is a dysfunction of heart atriums shown as irregular heart activity leading to a higher risk of heart failure. Since AF may occur episodically, it is usually diagnosed using ECG Holter recordings. However, the presence of other pathologies and noise makes the automated processing of ECG Holter recordings complicated. Here, we present a new feature to distinguish AF from sinus rhythm as well as from other pathologies: Clustered Standard Deviation (CSTD).Method: QRS complexes are extracted from the ECG signal, and inter-beat intervals (RR) are ordered by their length. Then, RR clusters are found and the mean RR value is computed for each RR cluster. CSTD is computed using a formula for standard deviation using cluster-specific mean values instead of a global mean.Results: CSTD was evaluated for 7,254 ECG segments from a private dataset (MDT company, Brno, Czechia), 60 seconds length, 1-lead, 250 Hz sampling frequency. CSTD showed high values for AF while remaining low for other pathologies and sinus rhythm. CSTD between AF and other classes showed AUC 0.95. For comparison, a standard deviation of RR intervals leads to AUC 0.65 due to its sensitivity to other pathologies. Test on public MIT-AFDB dataset shown AUC and AUPRC 0.98 and 0.97, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Automated Approach Based on a Convolutional Neural Network for Left Atrium Segmentation From Late Gadolinium Enhanced Magnetic Resonance Imaging Multiobjective Optimization Approach to Localization of Ectopic Beats by Single Dipole: Case Study Sepsis Prediction in Intensive Care Unit Using Ensemble of XGboost Models A Comparative Analysis of HMM and CRF for Early Prediction of Sepsis Blocking L-Type Calcium Current Reduces Vulnerability to Re-Entry in Human iPSC-Derived Cardiomyocytes Tissue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1