Kun Ren, Thaddeus Diamond, D. Abadi, Alexander Thomson
{"title":"内存数据库系统中的低开销异步检查点","authors":"Kun Ren, Thaddeus Diamond, D. Abadi, Alexander Thomson","doi":"10.1145/2882903.2915966","DOIUrl":null,"url":null,"abstract":"As it becomes increasingly common for transaction processing systems to operate on datasets that fit within the main memory of a single machine or a cluster of commodity machines, traditional mechanisms for guaranteeing transaction durability---which typically involve synchronous log flushes---incur increasingly unappealing costs to otherwise lightweight transactions. Many applications have turned to periodically checkpointing full database state. However, existing checkpointing methods---even those which avoid freezing the storage layer---often come with significant costs to operation throughput, end-to-end latency, and total memory usage. This paper presents Checkpointing Asynchronously using Logical Consistency (CALC), a lightweight, asynchronous technique for capturing database snapshots that does not require a physical point of consistency to create a checkpoint, and avoids conspicuous latency spikes incurred by other database snapshotting schemes. Our experiments show that CALC can capture frequent checkpoints across a variety of transactional workloads with extremely small cost to transactional throughput and low additional memory usage compared to other state-of-the-art checkpointing systems.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Low-Overhead Asynchronous Checkpointing in Main-Memory Database Systems\",\"authors\":\"Kun Ren, Thaddeus Diamond, D. Abadi, Alexander Thomson\",\"doi\":\"10.1145/2882903.2915966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As it becomes increasingly common for transaction processing systems to operate on datasets that fit within the main memory of a single machine or a cluster of commodity machines, traditional mechanisms for guaranteeing transaction durability---which typically involve synchronous log flushes---incur increasingly unappealing costs to otherwise lightweight transactions. Many applications have turned to periodically checkpointing full database state. However, existing checkpointing methods---even those which avoid freezing the storage layer---often come with significant costs to operation throughput, end-to-end latency, and total memory usage. This paper presents Checkpointing Asynchronously using Logical Consistency (CALC), a lightweight, asynchronous technique for capturing database snapshots that does not require a physical point of consistency to create a checkpoint, and avoids conspicuous latency spikes incurred by other database snapshotting schemes. Our experiments show that CALC can capture frequent checkpoints across a variety of transactional workloads with extremely small cost to transactional throughput and low additional memory usage compared to other state-of-the-art checkpointing systems.\",\"PeriodicalId\":20483,\"journal\":{\"name\":\"Proceedings of the 2016 International Conference on Management of Data\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2882903.2915966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2915966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-Overhead Asynchronous Checkpointing in Main-Memory Database Systems
As it becomes increasingly common for transaction processing systems to operate on datasets that fit within the main memory of a single machine or a cluster of commodity machines, traditional mechanisms for guaranteeing transaction durability---which typically involve synchronous log flushes---incur increasingly unappealing costs to otherwise lightweight transactions. Many applications have turned to periodically checkpointing full database state. However, existing checkpointing methods---even those which avoid freezing the storage layer---often come with significant costs to operation throughput, end-to-end latency, and total memory usage. This paper presents Checkpointing Asynchronously using Logical Consistency (CALC), a lightweight, asynchronous technique for capturing database snapshots that does not require a physical point of consistency to create a checkpoint, and avoids conspicuous latency spikes incurred by other database snapshotting schemes. Our experiments show that CALC can capture frequent checkpoints across a variety of transactional workloads with extremely small cost to transactional throughput and low additional memory usage compared to other state-of-the-art checkpointing systems.