一种检测社交媒体假新闻的机器学习技术

IF 4.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal on Semantic Web and Information Systems Pub Date : 2023-07-20 DOI:10.4018/ijswis.326120
M. Arowolo, S. Misra, R. Ogundokun
{"title":"一种检测社交媒体假新闻的机器学习技术","authors":"M. Arowolo, S. Misra, R. Ogundokun","doi":"10.4018/ijswis.326120","DOIUrl":null,"url":null,"abstract":"The emergence of the Internet and the growing development of online platforms (like Facebook and Instagram) opened the way for disseminating information that hasn't been experienced in the history of mankind earlier. Consumers generate and share more information and a massive amount of data than ever with the growing utilization of social media sites, many of which are deceptive with little relevance to reality. A daunting task is the automated classification of a text article as misleading or misinformation. To see the latest news alerts, individuals often utilize e-newspapers, Twitter, Instagram, Youtube, and many more. Fake news created on social media can lead to uncertainty amongst individuals and psychiatric illness. We may detect that news obtained based on machine learning techniques is either true or false. This study proposes a machine learning technique to detect fake news by carrying out filtration on social media data, classifying the preprocessed data using a machine learning algorithm, evaluating the developed system, and evaluating the results.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"62 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Machine Learning Technique for Detection of Social Media Fake News\",\"authors\":\"M. Arowolo, S. Misra, R. Ogundokun\",\"doi\":\"10.4018/ijswis.326120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of the Internet and the growing development of online platforms (like Facebook and Instagram) opened the way for disseminating information that hasn't been experienced in the history of mankind earlier. Consumers generate and share more information and a massive amount of data than ever with the growing utilization of social media sites, many of which are deceptive with little relevance to reality. A daunting task is the automated classification of a text article as misleading or misinformation. To see the latest news alerts, individuals often utilize e-newspapers, Twitter, Instagram, Youtube, and many more. Fake news created on social media can lead to uncertainty amongst individuals and psychiatric illness. We may detect that news obtained based on machine learning techniques is either true or false. This study proposes a machine learning technique to detect fake news by carrying out filtration on social media data, classifying the preprocessed data using a machine learning algorithm, evaluating the developed system, and evaluating the results.\",\"PeriodicalId\":54934,\"journal\":{\"name\":\"International Journal on Semantic Web and Information Systems\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Semantic Web and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijswis.326120\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.326120","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

互联网的出现和在线平台(如Facebook和Instagram)的不断发展,为人类历史上前所未有的信息传播开辟了道路。随着社交媒体网站的使用率越来越高,消费者产生和分享的信息和海量数据比以往任何时候都多,而其中许多网站都具有欺骗性,与现实毫无关联。一项艰巨的任务是将文本文章自动分类为误导性或错误信息。为了看到最新的新闻提醒,人们经常使用电子报纸、Twitter、Instagram、Youtube等等。社交媒体上的假新闻会导致个人和精神疾病的不确定性。我们可以检测到基于机器学习技术获得的新闻是真的还是假的。本研究提出了一种机器学习技术,通过对社交媒体数据进行过滤,使用机器学习算法对预处理数据进行分类,评估开发的系统,并评估结果来检测假新闻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Machine Learning Technique for Detection of Social Media Fake News
The emergence of the Internet and the growing development of online platforms (like Facebook and Instagram) opened the way for disseminating information that hasn't been experienced in the history of mankind earlier. Consumers generate and share more information and a massive amount of data than ever with the growing utilization of social media sites, many of which are deceptive with little relevance to reality. A daunting task is the automated classification of a text article as misleading or misinformation. To see the latest news alerts, individuals often utilize e-newspapers, Twitter, Instagram, Youtube, and many more. Fake news created on social media can lead to uncertainty amongst individuals and psychiatric illness. We may detect that news obtained based on machine learning techniques is either true or false. This study proposes a machine learning technique to detect fake news by carrying out filtration on social media data, classifying the preprocessed data using a machine learning algorithm, evaluating the developed system, and evaluating the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
12.50%
发文量
51
审稿时长
20 months
期刊介绍: The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.
期刊最新文献
A Web Semantic-Based Text Analysis Approach for Enhancing Named Entity Recognition Using PU-Learning and Negative Sampling Blockchain-Based Lightweight Authentication Mechanisms for Industrial Internet of Things and Information Systems A Network Intrusion Detection Method for Information Systems Using Federated Learning and Improved Transformer Semantic Trajectory Planning for Industrial Robotics Digital Copyright Management Mechanism Based on Dynamic Encryption for Multiplatform Browsers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1