{"title":"机器人设备的虚拟原型与仿真及远程处理活动的维护程序","authors":"S. Papa, G. Gironimo, F. Casoria, G. Miccichè","doi":"10.1115/ICONE26-82390","DOIUrl":null,"url":null,"abstract":"The paper describes the activities of conceptual design of tools and procedures and the virtual simulation of the Remote Handling (RH) tasks provided in the maintenance of the systems present in the Access Cell (AC) of DONES (DEMO Oriented Neutron Source) facility. In particular, the RH maintenance of the Target Assembly (TA) is critical because of its position in the most severe region of neutron irradiation, the Test Cell (TC), where the material specimen are tested to understand the degradation of the materials properties throughout the reactor operational life. The main RH maintenance activity includes the replacement of the entire TA and the cleaning of the surfaces of connection in the TC. The cleaning operation is fundamental because it allows the removal of any lithium solid deposition from the surfaces: any further deposition on the surfaces could compromise the sealing of the TA. The RH is based on the idea of a reconfigurable modular chain of devices connected to the Access Cell Mast Crane (ACMC) located in the AC. To increase the modularity and to reduce the costs of the Remote Handling System (RHS), a telescopic boom is used equipped with a Gripper Change System (GCS) that allows the use of different end effectors. To perform the tasks, a Parallel Kinematic Manipulator (PKM) and a Robotic Arm (RA) are proposed, allowing the tools to move with more degree of freedom in the AC space. The modeling of the devices and the 3D kinematic simulations maintenance operations tasks were simulated and tested in virtual reality environment, aimed at developing and validating the implemented maintenance procedures, in collaboration with the IDEAinVR Laboratory of CREATE/University of Naples Federico II, and the research center at ENEA Brasimone, Italy.","PeriodicalId":65607,"journal":{"name":"International Journal of Plant Engineering and Management","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Virtual Prototyping and Simulation of Robotic Devices and Maintenance Procedures for Remote Handling Activities in the Access Cell of DONES\",\"authors\":\"S. Papa, G. Gironimo, F. Casoria, G. Miccichè\",\"doi\":\"10.1115/ICONE26-82390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes the activities of conceptual design of tools and procedures and the virtual simulation of the Remote Handling (RH) tasks provided in the maintenance of the systems present in the Access Cell (AC) of DONES (DEMO Oriented Neutron Source) facility. In particular, the RH maintenance of the Target Assembly (TA) is critical because of its position in the most severe region of neutron irradiation, the Test Cell (TC), where the material specimen are tested to understand the degradation of the materials properties throughout the reactor operational life. The main RH maintenance activity includes the replacement of the entire TA and the cleaning of the surfaces of connection in the TC. The cleaning operation is fundamental because it allows the removal of any lithium solid deposition from the surfaces: any further deposition on the surfaces could compromise the sealing of the TA. The RH is based on the idea of a reconfigurable modular chain of devices connected to the Access Cell Mast Crane (ACMC) located in the AC. To increase the modularity and to reduce the costs of the Remote Handling System (RHS), a telescopic boom is used equipped with a Gripper Change System (GCS) that allows the use of different end effectors. To perform the tasks, a Parallel Kinematic Manipulator (PKM) and a Robotic Arm (RA) are proposed, allowing the tools to move with more degree of freedom in the AC space. The modeling of the devices and the 3D kinematic simulations maintenance operations tasks were simulated and tested in virtual reality environment, aimed at developing and validating the implemented maintenance procedures, in collaboration with the IDEAinVR Laboratory of CREATE/University of Naples Federico II, and the research center at ENEA Brasimone, Italy.\",\"PeriodicalId\":65607,\"journal\":{\"name\":\"International Journal of Plant Engineering and Management\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plant Engineering and Management\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1115/ICONE26-82390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plant Engineering and Management","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1115/ICONE26-82390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Virtual Prototyping and Simulation of Robotic Devices and Maintenance Procedures for Remote Handling Activities in the Access Cell of DONES
The paper describes the activities of conceptual design of tools and procedures and the virtual simulation of the Remote Handling (RH) tasks provided in the maintenance of the systems present in the Access Cell (AC) of DONES (DEMO Oriented Neutron Source) facility. In particular, the RH maintenance of the Target Assembly (TA) is critical because of its position in the most severe region of neutron irradiation, the Test Cell (TC), where the material specimen are tested to understand the degradation of the materials properties throughout the reactor operational life. The main RH maintenance activity includes the replacement of the entire TA and the cleaning of the surfaces of connection in the TC. The cleaning operation is fundamental because it allows the removal of any lithium solid deposition from the surfaces: any further deposition on the surfaces could compromise the sealing of the TA. The RH is based on the idea of a reconfigurable modular chain of devices connected to the Access Cell Mast Crane (ACMC) located in the AC. To increase the modularity and to reduce the costs of the Remote Handling System (RHS), a telescopic boom is used equipped with a Gripper Change System (GCS) that allows the use of different end effectors. To perform the tasks, a Parallel Kinematic Manipulator (PKM) and a Robotic Arm (RA) are proposed, allowing the tools to move with more degree of freedom in the AC space. The modeling of the devices and the 3D kinematic simulations maintenance operations tasks were simulated and tested in virtual reality environment, aimed at developing and validating the implemented maintenance procedures, in collaboration with the IDEAinVR Laboratory of CREATE/University of Naples Federico II, and the research center at ENEA Brasimone, Italy.