基于计算机视觉和机器学习的多维视频反向搜索引擎

Qian Chen, Yu Sun
{"title":"基于计算机视觉和机器学习的多维视频反向搜索引擎","authors":"Qian Chen, Yu Sun","doi":"10.5121/csit.2022.120911","DOIUrl":null,"url":null,"abstract":"Online media has become a mainstream of current society. With the rapid development of video data, how to acquire desired information from certain provided media is an urgent problem nowadays. The focus of this paper is to analyse a sufficient algorithm to address the issue of dynamic complex movie classification. This paper briefly demonstrates three major methods to acquire data and information from movies, including image classification, object detection, and audio classification. Its purpose is to allow the computer to analyse the content inside of each movie and understand video content. Movie classification has high research and application value. By implementing described methods, finding the most efficient methods to classify movies is the purpose of this paper. It is foreseeable that certain methods may have advantages over others when the clips are more special than others in some way, such as the audio has several significant peaks and the video has more content than others. This research aims to find a middle ground between accuracy and efficiency to optimize the outcome.","PeriodicalId":91205,"journal":{"name":"Artificial intelligence and applications (Commerce, Calif.)","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Multi-Dimensional Video Reverse Search Engine using Computer Vision and Machine Learning\",\"authors\":\"Qian Chen, Yu Sun\",\"doi\":\"10.5121/csit.2022.120911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online media has become a mainstream of current society. With the rapid development of video data, how to acquire desired information from certain provided media is an urgent problem nowadays. The focus of this paper is to analyse a sufficient algorithm to address the issue of dynamic complex movie classification. This paper briefly demonstrates three major methods to acquire data and information from movies, including image classification, object detection, and audio classification. Its purpose is to allow the computer to analyse the content inside of each movie and understand video content. Movie classification has high research and application value. By implementing described methods, finding the most efficient methods to classify movies is the purpose of this paper. It is foreseeable that certain methods may have advantages over others when the clips are more special than others in some way, such as the audio has several significant peaks and the video has more content than others. This research aims to find a middle ground between accuracy and efficiency to optimize the outcome.\",\"PeriodicalId\":91205,\"journal\":{\"name\":\"Artificial intelligence and applications (Commerce, Calif.)\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence and applications (Commerce, Calif.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2022.120911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence and applications (Commerce, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2022.120911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络媒体已经成为当今社会的主流。随着视频数据的快速发展,如何从给定的媒体中获取所需的信息是当前迫切需要解决的问题。本文的重点是分析一种足够的算法来解决动态复杂电影分类问题。本文简要介绍了从电影中获取数据和信息的三种主要方法,即图像分类、目标检测和音频分类。它的目的是让计算机分析每部电影的内容,并理解视频内容。电影分类具有很高的研究和应用价值。通过实现上述方法,找到最有效的电影分类方法是本文的目的。可以预见,当片段在某些方面比其他方法更特殊时,某些方法可能比其他方法具有优势,例如音频具有几个显著的峰值,视频具有比其他方法更多的内容。本研究的目的是在准确性和效率之间找到一个中间地带,以优化结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Multi-Dimensional Video Reverse Search Engine using Computer Vision and Machine Learning
Online media has become a mainstream of current society. With the rapid development of video data, how to acquire desired information from certain provided media is an urgent problem nowadays. The focus of this paper is to analyse a sufficient algorithm to address the issue of dynamic complex movie classification. This paper briefly demonstrates three major methods to acquire data and information from movies, including image classification, object detection, and audio classification. Its purpose is to allow the computer to analyse the content inside of each movie and understand video content. Movie classification has high research and application value. By implementing described methods, finding the most efficient methods to classify movies is the purpose of this paper. It is foreseeable that certain methods may have advantages over others when the clips are more special than others in some way, such as the audio has several significant peaks and the video has more content than others. This research aims to find a middle ground between accuracy and efficiency to optimize the outcome.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Methodology of Measurement Intellectualization based on Regularized Bayesian Approach in Uncertain Conditions Stochastic Dual Coordinate Ascent for Learning Sign Constrained Linear Predictors Data Smoothing Filling Method based on ScRNA-Seq Data Zero-Value Identification Batch-Stochastic Sub-Gradient Method for Solving Non-Smooth Convex Loss Function Problems Teaching Reading Skills More Effectively
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1