{"title":"囊性纤维化的应激源和应激反应","authors":"Z. Bebok, Lianwu Fu","doi":"10.1515/ersc-2018-0002","DOIUrl":null,"url":null,"abstract":"Abstract Cystic fibrosis (CF) is a life-shortening, genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR). The primary cause of CF is reduced CFTR-mediated chloride and bicarbonate transport, due to mutations in CFTR. However, inflammation and persistent infections influence clinical outcome. Cellular stress response pathways, such as the unfolded protein response (UPR) and the integrated stress response (ISR), referred to here as cellular stress response pathways (SRPs), contribute to the pathology of human disorders. Multiple studies have indicated activation of SRPs in CF tissues. We review our present understanding of how SRPs are activated in CF and their contribution to pathology. We conclude that reduced CFTR function in CF organs establishes a tissue environment in which internal or external insults activate SRPs. SRPs contribute to CF pathogenesis by reducing CFTR expression, enhancing inflammation with consequent tissue remodeling. Understanding the contribution of SRPs to CF pathogenesis is crucial even in the era of CFTR “modulators” that are designed to potentiate, correct or amplify CFTR function, since there is an urgent need for supportive treatments. Importantly, CF patients with established pathology could benefit from the targeted use of drugs that modulate SRPs to reduce the symptoms.","PeriodicalId":29730,"journal":{"name":"Cell Pathology","volume":"8 1","pages":"11 - 29"},"PeriodicalIF":0.7000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Stressors and Stress Responses in Cystic Fibrosis\",\"authors\":\"Z. Bebok, Lianwu Fu\",\"doi\":\"10.1515/ersc-2018-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Cystic fibrosis (CF) is a life-shortening, genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR). The primary cause of CF is reduced CFTR-mediated chloride and bicarbonate transport, due to mutations in CFTR. However, inflammation and persistent infections influence clinical outcome. Cellular stress response pathways, such as the unfolded protein response (UPR) and the integrated stress response (ISR), referred to here as cellular stress response pathways (SRPs), contribute to the pathology of human disorders. Multiple studies have indicated activation of SRPs in CF tissues. We review our present understanding of how SRPs are activated in CF and their contribution to pathology. We conclude that reduced CFTR function in CF organs establishes a tissue environment in which internal or external insults activate SRPs. SRPs contribute to CF pathogenesis by reducing CFTR expression, enhancing inflammation with consequent tissue remodeling. Understanding the contribution of SRPs to CF pathogenesis is crucial even in the era of CFTR “modulators” that are designed to potentiate, correct or amplify CFTR function, since there is an urgent need for supportive treatments. Importantly, CF patients with established pathology could benefit from the targeted use of drugs that modulate SRPs to reduce the symptoms.\",\"PeriodicalId\":29730,\"journal\":{\"name\":\"Cell Pathology\",\"volume\":\"8 1\",\"pages\":\"11 - 29\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Pathology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/ersc-2018-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ersc-2018-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract Cystic fibrosis (CF) is a life-shortening, genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR). The primary cause of CF is reduced CFTR-mediated chloride and bicarbonate transport, due to mutations in CFTR. However, inflammation and persistent infections influence clinical outcome. Cellular stress response pathways, such as the unfolded protein response (UPR) and the integrated stress response (ISR), referred to here as cellular stress response pathways (SRPs), contribute to the pathology of human disorders. Multiple studies have indicated activation of SRPs in CF tissues. We review our present understanding of how SRPs are activated in CF and their contribution to pathology. We conclude that reduced CFTR function in CF organs establishes a tissue environment in which internal or external insults activate SRPs. SRPs contribute to CF pathogenesis by reducing CFTR expression, enhancing inflammation with consequent tissue remodeling. Understanding the contribution of SRPs to CF pathogenesis is crucial even in the era of CFTR “modulators” that are designed to potentiate, correct or amplify CFTR function, since there is an urgent need for supportive treatments. Importantly, CF patients with established pathology could benefit from the targeted use of drugs that modulate SRPs to reduce the symptoms.