基于稳定裕度理论的增益整定鲁棒力控制

Kenji Ogawa, K. Ohnishi, M. Ibrahim
{"title":"基于稳定裕度理论的增益整定鲁棒力控制","authors":"Kenji Ogawa, K. Ohnishi, M. Ibrahim","doi":"10.1109/ISIE.2017.8001403","DOIUrl":null,"url":null,"abstract":"This paper proposes a force control system using the State Observer Based Disturbance Observer (SO-DOB) and the State Observer Based Reaction Force Observer (SO-RFOB) based on the novel observer gain tuning methodology. The observer gain tuning methodology is based on the stable margin theory. By using the proposed gain tuning methodology, the system stability and the robustness of the SO-DOB and the SO-RFOB is guaranteed. The validity of the proposed method was tested by both simulation and the experiment works. From the results, the control performance was improved compared with the DOB and the RFOB based on the Low Pass Filter (LPF) based estimation.","PeriodicalId":6597,"journal":{"name":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","volume":"49 1","pages":"1123-1128"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust force control with a novel gain tuning methodology based on the stable margin theory\",\"authors\":\"Kenji Ogawa, K. Ohnishi, M. Ibrahim\",\"doi\":\"10.1109/ISIE.2017.8001403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a force control system using the State Observer Based Disturbance Observer (SO-DOB) and the State Observer Based Reaction Force Observer (SO-RFOB) based on the novel observer gain tuning methodology. The observer gain tuning methodology is based on the stable margin theory. By using the proposed gain tuning methodology, the system stability and the robustness of the SO-DOB and the SO-RFOB is guaranteed. The validity of the proposed method was tested by both simulation and the experiment works. From the results, the control performance was improved compared with the DOB and the RFOB based on the Low Pass Filter (LPF) based estimation.\",\"PeriodicalId\":6597,\"journal\":{\"name\":\"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)\",\"volume\":\"49 1\",\"pages\":\"1123-1128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIE.2017.8001403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2017.8001403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于新的观测器增益整定方法,提出了一种基于状态观测器的扰动观测器(SO-DOB)和基于状态观测器的反作用力观测器(SO-RFOB)的力控制系统。观测器增益整定方法基于稳定裕度理论。采用所提出的增益调谐方法,保证了SO-DOB和SO-RFOB的系统稳定性和鲁棒性。通过仿真和实验验证了该方法的有效性。结果表明,与基于低通滤波器(LPF)估计的DOB和RFOB相比,该方法的控制性能得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust force control with a novel gain tuning methodology based on the stable margin theory
This paper proposes a force control system using the State Observer Based Disturbance Observer (SO-DOB) and the State Observer Based Reaction Force Observer (SO-RFOB) based on the novel observer gain tuning methodology. The observer gain tuning methodology is based on the stable margin theory. By using the proposed gain tuning methodology, the system stability and the robustness of the SO-DOB and the SO-RFOB is guaranteed. The validity of the proposed method was tested by both simulation and the experiment works. From the results, the control performance was improved compared with the DOB and the RFOB based on the Low Pass Filter (LPF) based estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
32nd IEEE International Symposium on Industrial Electronics, ISIE 2023, Helsinki, Finland, June 19-21, 2023 Fuel Cell prognosis using particle filter: application to the automotive sector Bi-Level Distribution Network Planning Integrated with Energy Storage to PV-Connected Network Distributed adaptive anti-windup consensus tracking of networked systems with switching topologies Deep Belief Network and Dempster-Shafer Evidence Theory for Bearing Fault Diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1