压缩数据Kirchhoff迁移匹配追踪算法的比较分析

Carlos A. Fajardo, Fabian Sanchez, A. Ramirez
{"title":"压缩数据Kirchhoff迁移匹配追踪算法的比较分析","authors":"Carlos A. Fajardo, Fabian Sanchez, A. Ramirez","doi":"10.29047/01225383.142","DOIUrl":null,"url":null,"abstract":"Currently, the amount of recorded data in a seismic survey is in the order of hundreds of Terabytes. The processing of such amount of data implies significant computational challenges. One of them is the I/O bottleneck between the main memory and the node memory. This bottleneck results from the fact that the disk memory access speed is thousands-fold slower than the processing speed of the co-processors (eg. GPUs). We propose a special Kirchhoff migration that develops the migration process over compressed data. The seismic data is compressed by using three well-known Matching Pursuit algorithms. Our approach seeks to reduce the number of memory accesses to the disk required by the Kirchhoff operator and to add more mathematical operations to the traditional Kirchhoff migration. Thus, we change slow operations (memory access) for fast operations (math operations). Experimental results show that the proposed method preserves, to a large extent, the seismic attributes of the image for a compression ratio up to 20:1.","PeriodicalId":10745,"journal":{"name":"CT&F - Ciencia, Tecnología y Futuro","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative analysis of matching pursuit algorithms for Kirchhoff migration on compressed data\",\"authors\":\"Carlos A. Fajardo, Fabian Sanchez, A. Ramirez\",\"doi\":\"10.29047/01225383.142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, the amount of recorded data in a seismic survey is in the order of hundreds of Terabytes. The processing of such amount of data implies significant computational challenges. One of them is the I/O bottleneck between the main memory and the node memory. This bottleneck results from the fact that the disk memory access speed is thousands-fold slower than the processing speed of the co-processors (eg. GPUs). We propose a special Kirchhoff migration that develops the migration process over compressed data. The seismic data is compressed by using three well-known Matching Pursuit algorithms. Our approach seeks to reduce the number of memory accesses to the disk required by the Kirchhoff operator and to add more mathematical operations to the traditional Kirchhoff migration. Thus, we change slow operations (memory access) for fast operations (math operations). Experimental results show that the proposed method preserves, to a large extent, the seismic attributes of the image for a compression ratio up to 20:1.\",\"PeriodicalId\":10745,\"journal\":{\"name\":\"CT&F - Ciencia, Tecnología y Futuro\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CT&F - Ciencia, Tecnología y Futuro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29047/01225383.142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CT&F - Ciencia, Tecnología y Futuro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29047/01225383.142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,地震调查中记录的数据量约为数百tb。处理如此大量的数据意味着重大的计算挑战。其中之一是主内存和节点内存之间的I/O瓶颈。这种瓶颈源于这样一个事实,即磁盘内存访问速度比协处理器的处理速度慢数千倍。gpu)。我们提出了一种特殊的Kirchhoff迁移,它在压缩数据上开发迁移过程。采用三种著名的匹配追踪算法对地震数据进行压缩。我们的方法旨在减少Kirchhoff算子对磁盘的内存访问次数,并在传统的Kirchhoff迁移中添加更多的数学运算。因此,我们将慢速操作(内存访问)改为快速操作(数学操作)。实验结果表明,在压缩比高达20:1的情况下,该方法在很大程度上保留了图像的地震属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative analysis of matching pursuit algorithms for Kirchhoff migration on compressed data
Currently, the amount of recorded data in a seismic survey is in the order of hundreds of Terabytes. The processing of such amount of data implies significant computational challenges. One of them is the I/O bottleneck between the main memory and the node memory. This bottleneck results from the fact that the disk memory access speed is thousands-fold slower than the processing speed of the co-processors (eg. GPUs). We propose a special Kirchhoff migration that develops the migration process over compressed data. The seismic data is compressed by using three well-known Matching Pursuit algorithms. Our approach seeks to reduce the number of memory accesses to the disk required by the Kirchhoff operator and to add more mathematical operations to the traditional Kirchhoff migration. Thus, we change slow operations (memory access) for fast operations (math operations). Experimental results show that the proposed method preserves, to a large extent, the seismic attributes of the image for a compression ratio up to 20:1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Critical factors for unconventional hydrocarbon resources development Mass balance of Neogene sediments in the Colombia basin relationship with the evolution of the Magdalena and Cauca River basins Suitability assessment for electricity generation through renewable sources: towards sustainable energy production Bulk rheology characterization of biopolymer solutions and discussions of their potential for enhanced oil recovery applications Comparative analysis of matching pursuit algorithms for Kirchhoff migration on compressed data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1