Ke Zhang, Y. Mao, S. Leng, Sabita Maharjan, Yan Zhang
{"title":"车辆边缘计算网络的最优延迟约束卸载","authors":"Ke Zhang, Y. Mao, S. Leng, Sabita Maharjan, Yan Zhang","doi":"10.1109/ICC.2017.7997360","DOIUrl":null,"url":null,"abstract":"The increasing number of smart vehicles and their resource hungry applications pose new challenges in terms of computation and processing for providing reliable and efficient vehicular services. Mobile Edge Computing (MEC) is a new paradigm with potential to improve vehicular services through computation offloading in close proximity to mobile vehicles. However, in the road with dense traffic flow, the computation limitation of these MEC servers may endanger the quality of offloading service. To address the problem, we propose a hierarchical cloud-based Vehicular Edge Computing (VEC) offloading framework, where a backup computing server in the neighborhood is introduced to make up for the deficit computing resources of MEC servers. Based on this framework, we adopt a Stackelberg game theoretic approach to design an optimal multilevel offloading scheme, which maximizes the utilities of both the vehicles and the computing servers. Furthermore, to obtain the optimal offloading strategies, we present an iterative distributed algorithm and prove its convergence. Numerical results indicate that our proposed scheme greatly enhances the utility of the offloading service providers.","PeriodicalId":6517,"journal":{"name":"2017 IEEE International Conference on Communications (ICC)","volume":"16 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"220","resultStr":"{\"title\":\"Optimal delay constrained offloading for vehicular edge computing networks\",\"authors\":\"Ke Zhang, Y. Mao, S. Leng, Sabita Maharjan, Yan Zhang\",\"doi\":\"10.1109/ICC.2017.7997360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing number of smart vehicles and their resource hungry applications pose new challenges in terms of computation and processing for providing reliable and efficient vehicular services. Mobile Edge Computing (MEC) is a new paradigm with potential to improve vehicular services through computation offloading in close proximity to mobile vehicles. However, in the road with dense traffic flow, the computation limitation of these MEC servers may endanger the quality of offloading service. To address the problem, we propose a hierarchical cloud-based Vehicular Edge Computing (VEC) offloading framework, where a backup computing server in the neighborhood is introduced to make up for the deficit computing resources of MEC servers. Based on this framework, we adopt a Stackelberg game theoretic approach to design an optimal multilevel offloading scheme, which maximizes the utilities of both the vehicles and the computing servers. Furthermore, to obtain the optimal offloading strategies, we present an iterative distributed algorithm and prove its convergence. Numerical results indicate that our proposed scheme greatly enhances the utility of the offloading service providers.\",\"PeriodicalId\":6517,\"journal\":{\"name\":\"2017 IEEE International Conference on Communications (ICC)\",\"volume\":\"16 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"220\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Communications (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC.2017.7997360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2017.7997360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal delay constrained offloading for vehicular edge computing networks
The increasing number of smart vehicles and their resource hungry applications pose new challenges in terms of computation and processing for providing reliable and efficient vehicular services. Mobile Edge Computing (MEC) is a new paradigm with potential to improve vehicular services through computation offloading in close proximity to mobile vehicles. However, in the road with dense traffic flow, the computation limitation of these MEC servers may endanger the quality of offloading service. To address the problem, we propose a hierarchical cloud-based Vehicular Edge Computing (VEC) offloading framework, where a backup computing server in the neighborhood is introduced to make up for the deficit computing resources of MEC servers. Based on this framework, we adopt a Stackelberg game theoretic approach to design an optimal multilevel offloading scheme, which maximizes the utilities of both the vehicles and the computing servers. Furthermore, to obtain the optimal offloading strategies, we present an iterative distributed algorithm and prove its convergence. Numerical results indicate that our proposed scheme greatly enhances the utility of the offloading service providers.