基于深度强化学习的动态环境下多机器人协同导航

Ruihua Han, Shengduo Chen, Qi Hao
{"title":"基于深度强化学习的动态环境下多机器人协同导航","authors":"Ruihua Han, Shengduo Chen, Qi Hao","doi":"10.1109/ICRA40945.2020.9197209","DOIUrl":null,"url":null,"abstract":"The challenges of multi-robot navigation in dynamic environments lie in uncertainties in obstacle complexities, partially observation of robots, and policy implementation from simulations to the real world. This paper presents a cooperative approach to address the multi-robot navigation problem (MRNP) under dynamic environments using a deep reinforcement learning (DRL) framework, which can help multiple robots jointly achieve optimal paths despite a certain degree of obstacle complexities. The novelty of this work includes threefold: (1) developing a cooperative architecture that robots can exchange information with each other to select the optimal target locations; (2) developing a DRL based framework which can learn a navigation policy to generate the optimal paths for multiple robots; (3) developing a training mechanism based on dynamics randomization which can make the policy generalized and achieve the maximum performance in the real world. The method is tested with Gazebo simulations and 4 differential drive robots. Both simulation and experiment results validate the superior performance of the proposed method in terms of success rate and travel time when compared with the other state-of-art technologies.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"21 1","pages":"448-454"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Cooperative Multi-Robot Navigation in Dynamic Environment with Deep Reinforcement Learning\",\"authors\":\"Ruihua Han, Shengduo Chen, Qi Hao\",\"doi\":\"10.1109/ICRA40945.2020.9197209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The challenges of multi-robot navigation in dynamic environments lie in uncertainties in obstacle complexities, partially observation of robots, and policy implementation from simulations to the real world. This paper presents a cooperative approach to address the multi-robot navigation problem (MRNP) under dynamic environments using a deep reinforcement learning (DRL) framework, which can help multiple robots jointly achieve optimal paths despite a certain degree of obstacle complexities. The novelty of this work includes threefold: (1) developing a cooperative architecture that robots can exchange information with each other to select the optimal target locations; (2) developing a DRL based framework which can learn a navigation policy to generate the optimal paths for multiple robots; (3) developing a training mechanism based on dynamics randomization which can make the policy generalized and achieve the maximum performance in the real world. The method is tested with Gazebo simulations and 4 differential drive robots. Both simulation and experiment results validate the superior performance of the proposed method in terms of success rate and travel time when compared with the other state-of-art technologies.\",\"PeriodicalId\":6859,\"journal\":{\"name\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"21 1\",\"pages\":\"448-454\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA40945.2020.9197209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

动态环境下多机器人导航的挑战在于障碍复杂性的不确定性、机器人的部分可观察性以及从模拟到现实世界的策略实施。本文提出了一种基于深度强化学习(DRL)框架的动态环境下多机器人导航问题(MRNP)的协作方法,该方法可以帮助多个机器人在一定程度的障碍物复杂性下共同实现最优路径。该工作的新颖之处包括三个方面:(1)开发了一种协作架构,使机器人能够相互交换信息以选择最优目标位置;(2)开发基于DRL的导航策略学习框架,生成多个机器人的最优路径;(3)开发一种基于动态随机化的训练机制,使策略泛化并在现实世界中达到最大性能。通过Gazebo仿真和4台差动驱动机器人对该方法进行了验证。仿真和实验结果都证明了该方法在成功率和行程时间方面优于其他先进技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cooperative Multi-Robot Navigation in Dynamic Environment with Deep Reinforcement Learning
The challenges of multi-robot navigation in dynamic environments lie in uncertainties in obstacle complexities, partially observation of robots, and policy implementation from simulations to the real world. This paper presents a cooperative approach to address the multi-robot navigation problem (MRNP) under dynamic environments using a deep reinforcement learning (DRL) framework, which can help multiple robots jointly achieve optimal paths despite a certain degree of obstacle complexities. The novelty of this work includes threefold: (1) developing a cooperative architecture that robots can exchange information with each other to select the optimal target locations; (2) developing a DRL based framework which can learn a navigation policy to generate the optimal paths for multiple robots; (3) developing a training mechanism based on dynamics randomization which can make the policy generalized and achieve the maximum performance in the real world. The method is tested with Gazebo simulations and 4 differential drive robots. Both simulation and experiment results validate the superior performance of the proposed method in terms of success rate and travel time when compared with the other state-of-art technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstractions for computing all robotic sensors that suffice to solve a planning problem An Adaptive Supervisory Control Approach to Dynamic Locomotion Under Parametric Uncertainty Interval Search Genetic Algorithm Based on Trajectory to Solve Inverse Kinematics of Redundant Manipulators and Its Application Path-Following Model Predictive Control of Ballbots Identification and evaluation of a force model for multirotor UAVs*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1