{"title":"基于驱动缩减理论的自参照建模控制系统人工动机","authors":"Moritz Schneider, J. Adamy","doi":"10.1109/IJCNN.2015.7280623","DOIUrl":null,"url":null,"abstract":"Motivation and emotion are inseparable component factors of value systems in living beings, which enable them to act purposefully in a partially unknown and sometimes unforgiving environment. Value systems that drive innate reinforcement learning mechanisms have been identified as key factors in self-directed control and autonomous development towards higher intelligence and seem crucial in the development of a concept of “self” in sentient beings [1]. This contribution is concerned with the relationship between artificial learning control systems and innate value systems. In particular, we adapt the state-of-the-art model of motivational processes based on reduction of generalized drives towards higher flexibility, expressivity and representation capability. A framework for modelling self-adaptive value systems, which develop autonomously starting from an inherited (or designed) innate representation, within a learning control system architecture is formulated. We discuss the relationship of anticipated effects in this control architecture with psychological theory on motivations and contrast our framework with related approaches.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"27 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Artificial motivations based on drive-reduction theory in self-referential model-building control systems\",\"authors\":\"Moritz Schneider, J. Adamy\",\"doi\":\"10.1109/IJCNN.2015.7280623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivation and emotion are inseparable component factors of value systems in living beings, which enable them to act purposefully in a partially unknown and sometimes unforgiving environment. Value systems that drive innate reinforcement learning mechanisms have been identified as key factors in self-directed control and autonomous development towards higher intelligence and seem crucial in the development of a concept of “self” in sentient beings [1]. This contribution is concerned with the relationship between artificial learning control systems and innate value systems. In particular, we adapt the state-of-the-art model of motivational processes based on reduction of generalized drives towards higher flexibility, expressivity and representation capability. A framework for modelling self-adaptive value systems, which develop autonomously starting from an inherited (or designed) innate representation, within a learning control system architecture is formulated. We discuss the relationship of anticipated effects in this control architecture with psychological theory on motivations and contrast our framework with related approaches.\",\"PeriodicalId\":6539,\"journal\":{\"name\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"27 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2015.7280623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Artificial motivations based on drive-reduction theory in self-referential model-building control systems
Motivation and emotion are inseparable component factors of value systems in living beings, which enable them to act purposefully in a partially unknown and sometimes unforgiving environment. Value systems that drive innate reinforcement learning mechanisms have been identified as key factors in self-directed control and autonomous development towards higher intelligence and seem crucial in the development of a concept of “self” in sentient beings [1]. This contribution is concerned with the relationship between artificial learning control systems and innate value systems. In particular, we adapt the state-of-the-art model of motivational processes based on reduction of generalized drives towards higher flexibility, expressivity and representation capability. A framework for modelling self-adaptive value systems, which develop autonomously starting from an inherited (or designed) innate representation, within a learning control system architecture is formulated. We discuss the relationship of anticipated effects in this control architecture with psychological theory on motivations and contrast our framework with related approaches.