优先数据库修复中的歧义检测

B. Kimelfeld, Ester Livshits, L. Peterfreund
{"title":"优先数据库修复中的歧义检测","authors":"B. Kimelfeld, Ester Livshits, L. Peterfreund","doi":"10.4230/LIPIcs.ICDT.2017.17","DOIUrl":null,"url":null,"abstract":"In its traditional definition, a repair of an inconsistent database is a consistent database that differs from the inconsistent one in a \"minimal way.\" Often, repairs are not equally legitimate, as it is desired to prefer one over another; for example, one fact is regarded more reliable than another, or a more recent fact should be preferred to an earlier one. Motivated by these considerations, researchers have introduced and investigated the framework of preferred repairs, in the context of denial constraints and subset repairs. There, a priority relation between facts is lifted towards a priority relation between consistent databases, and repairs are restricted to the ones that are optimal in the lifted sense. Three notions of lifting (and optimal repairs) have been proposed: Pareto, global, and completion. In this paper we investigate the complexity of deciding whether the priority relation suffices to clean the database unambiguously, or in other words, whether there is exactly one optimal repair. We show that the different lifting semantics entail highly different complexities. Under Pareto optimality, the problem is coNP-complete, in data complexity, for every set of functional dependencies (FDs), except for the tractable case of (equivalence to) one FD per relation. Under global optimality, one FD per relation is still tractable, but we establish Pi-2-p-completeness for a relation with two FDs. In contrast, under completion optimality the problem is solvable in polynomial time for every set of FDs. In fact, we present a polynomial-time algorithm for arbitrary conflict hypergraphs. We further show that under a general assumption of transitivity, this algorithm solves the problem even for global optimality. The algorithm is extremely simple, but its proof of correctness is quite intricate.","PeriodicalId":90482,"journal":{"name":"Database theory-- ICDT : International Conference ... proceedings. International Conference on Database Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Detecting Ambiguity in Prioritized Database Repairing\",\"authors\":\"B. Kimelfeld, Ester Livshits, L. Peterfreund\",\"doi\":\"10.4230/LIPIcs.ICDT.2017.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In its traditional definition, a repair of an inconsistent database is a consistent database that differs from the inconsistent one in a \\\"minimal way.\\\" Often, repairs are not equally legitimate, as it is desired to prefer one over another; for example, one fact is regarded more reliable than another, or a more recent fact should be preferred to an earlier one. Motivated by these considerations, researchers have introduced and investigated the framework of preferred repairs, in the context of denial constraints and subset repairs. There, a priority relation between facts is lifted towards a priority relation between consistent databases, and repairs are restricted to the ones that are optimal in the lifted sense. Three notions of lifting (and optimal repairs) have been proposed: Pareto, global, and completion. In this paper we investigate the complexity of deciding whether the priority relation suffices to clean the database unambiguously, or in other words, whether there is exactly one optimal repair. We show that the different lifting semantics entail highly different complexities. Under Pareto optimality, the problem is coNP-complete, in data complexity, for every set of functional dependencies (FDs), except for the tractable case of (equivalence to) one FD per relation. Under global optimality, one FD per relation is still tractable, but we establish Pi-2-p-completeness for a relation with two FDs. In contrast, under completion optimality the problem is solvable in polynomial time for every set of FDs. In fact, we present a polynomial-time algorithm for arbitrary conflict hypergraphs. We further show that under a general assumption of transitivity, this algorithm solves the problem even for global optimality. The algorithm is extremely simple, but its proof of correctness is quite intricate.\",\"PeriodicalId\":90482,\"journal\":{\"name\":\"Database theory-- ICDT : International Conference ... proceedings. International Conference on Database Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Database theory-- ICDT : International Conference ... proceedings. International Conference on Database Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.ICDT.2017.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database theory-- ICDT : International Conference ... proceedings. International Conference on Database Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.ICDT.2017.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在其传统定义中,不一致数据库的修复是一个与不一致数据库“以最小的方式”不同的一致数据库。通常情况下,维修不是同等合法的,因为人们希望更喜欢一个。例如,一个事实被认为比另一个更可靠,或者一个最近的事实应该比一个更早的事实更受欢迎。出于这些考虑,研究人员在拒绝约束和子集修复的背景下引入并研究了首选修复的框架。在那里,事实之间的优先级关系被提升为一致数据库之间的优先级关系,并且修复仅限于在提升意义上最优的那些。提出了三个提升(和最优修复)的概念:帕累托、全局和完成。在本文中,我们研究了确定优先级关系是否足以明确地清理数据库的复杂性,或者换句话说,是否只有一个最佳修复。我们表明,不同的提升语义导致高度不同的复杂性。在Pareto最优性下,对于每一组功能依赖(FD),除了每个关系(等价于)一个FD的可处理情况外,在数据复杂性方面,问题是conp完全的。在全局最优性下,每个关系一个FD仍然是可处理的,但我们建立了具有两个FD的关系的pi -2-p完备性。相反,在补全最优性下,对于每组fd,问题都在多项式时间内可解。实际上,我们提出了一种求解任意冲突超图的多项式时间算法。进一步证明了在一般传递性假设下,该算法即使在全局最优的情况下也能解决问题。该算法极其简单,但其正确性的证明却相当复杂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting Ambiguity in Prioritized Database Repairing
In its traditional definition, a repair of an inconsistent database is a consistent database that differs from the inconsistent one in a "minimal way." Often, repairs are not equally legitimate, as it is desired to prefer one over another; for example, one fact is regarded more reliable than another, or a more recent fact should be preferred to an earlier one. Motivated by these considerations, researchers have introduced and investigated the framework of preferred repairs, in the context of denial constraints and subset repairs. There, a priority relation between facts is lifted towards a priority relation between consistent databases, and repairs are restricted to the ones that are optimal in the lifted sense. Three notions of lifting (and optimal repairs) have been proposed: Pareto, global, and completion. In this paper we investigate the complexity of deciding whether the priority relation suffices to clean the database unambiguously, or in other words, whether there is exactly one optimal repair. We show that the different lifting semantics entail highly different complexities. Under Pareto optimality, the problem is coNP-complete, in data complexity, for every set of functional dependencies (FDs), except for the tractable case of (equivalence to) one FD per relation. Under global optimality, one FD per relation is still tractable, but we establish Pi-2-p-completeness for a relation with two FDs. In contrast, under completion optimality the problem is solvable in polynomial time for every set of FDs. In fact, we present a polynomial-time algorithm for arbitrary conflict hypergraphs. We further show that under a general assumption of transitivity, this algorithm solves the problem even for global optimality. The algorithm is extremely simple, but its proof of correctness is quite intricate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalizing Greenwald-Khanna Streaming Quantile Summaries for Weighted Inputs A Simple Algorithm for Consistent Query Answering under Primary Keys Size Bounds and Algorithms for Conjunctive Regular Path Queries Compact Data Structures Meet Databases (Invited Talk) Enumerating Subgraphs of Constant Sizes in External Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1