受点磁源作用的方形腔内的导电流体流动和电势

IF 1.1 4区 工程技术 Q4 MECHANICS International Journal of Computational Fluid Dynamics Pub Date : 2022-05-28 DOI:10.1080/10618562.2022.2127695
P. Senel, M. Tezer-Sezgin
{"title":"受点磁源作用的方形腔内的导电流体流动和电势","authors":"P. Senel, M. Tezer-Sezgin","doi":"10.1080/10618562.2022.2127695","DOIUrl":null,"url":null,"abstract":"ABSTRACT Magnetohydrodynamics (MHD) flow in cavities subjected to both the magnetisation and the Lorentz forces due to a point magnetic source is studied. The governing PDEs are derived and iteratively solved by the dual reciprocity boundary elements method (DRBEM) with linear elements. It is shown that the magnetic field decelerates the axial flow around the point magnetic source, and a further increase in Ha causes a reverse flow in the pipe axis direction. An increase in Re, Ha, or Mn reduces the electric potential in magnitude. The planar velocity values decrease at the same rate as the Re increment. The influence of the magnetisation force lessens in high Re cases without alternating the axial velocity and the electric potential within the pipe. This study is the first to give the effects of both the magnetisation and the Lorentz forces on the fluid behaviour in terms of velocity, pressure, and electric potential.","PeriodicalId":56288,"journal":{"name":"International Journal of Computational Fluid Dynamics","volume":"17 1","pages":"424 - 439"},"PeriodicalIF":1.1000,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrically Conducting Fluid Flow and Electric Potential in a Square Cavity Subjected to a Point Magnetic Source\",\"authors\":\"P. Senel, M. Tezer-Sezgin\",\"doi\":\"10.1080/10618562.2022.2127695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Magnetohydrodynamics (MHD) flow in cavities subjected to both the magnetisation and the Lorentz forces due to a point magnetic source is studied. The governing PDEs are derived and iteratively solved by the dual reciprocity boundary elements method (DRBEM) with linear elements. It is shown that the magnetic field decelerates the axial flow around the point magnetic source, and a further increase in Ha causes a reverse flow in the pipe axis direction. An increase in Re, Ha, or Mn reduces the electric potential in magnitude. The planar velocity values decrease at the same rate as the Re increment. The influence of the magnetisation force lessens in high Re cases without alternating the axial velocity and the electric potential within the pipe. This study is the first to give the effects of both the magnetisation and the Lorentz forces on the fluid behaviour in terms of velocity, pressure, and electric potential.\",\"PeriodicalId\":56288,\"journal\":{\"name\":\"International Journal of Computational Fluid Dynamics\",\"volume\":\"17 1\",\"pages\":\"424 - 439\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10618562.2022.2127695\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10618562.2022.2127695","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了点磁源在磁化力和洛伦兹力作用下的腔体磁流体动力学(MHD)流动。利用线性元的对偶互易边界元法推导了控制偏微分方程,并对其进行了迭代求解。结果表明,磁场使绕点磁源的轴向流动减速,Ha的进一步增大会引起管道轴向的反向流动。Re、Ha或Mn的增加会减小电势的大小。平面速度值以与Re增量相同的速率下降。在不改变管内轴向速度和电势的情况下,高稀土条件下磁化力的影响减小。这项研究首次给出了磁化力和洛伦兹力在速度、压力和电势方面对流体行为的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrically Conducting Fluid Flow and Electric Potential in a Square Cavity Subjected to a Point Magnetic Source
ABSTRACT Magnetohydrodynamics (MHD) flow in cavities subjected to both the magnetisation and the Lorentz forces due to a point magnetic source is studied. The governing PDEs are derived and iteratively solved by the dual reciprocity boundary elements method (DRBEM) with linear elements. It is shown that the magnetic field decelerates the axial flow around the point magnetic source, and a further increase in Ha causes a reverse flow in the pipe axis direction. An increase in Re, Ha, or Mn reduces the electric potential in magnitude. The planar velocity values decrease at the same rate as the Re increment. The influence of the magnetisation force lessens in high Re cases without alternating the axial velocity and the electric potential within the pipe. This study is the first to give the effects of both the magnetisation and the Lorentz forces on the fluid behaviour in terms of velocity, pressure, and electric potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
7.70%
发文量
25
审稿时长
3 months
期刊介绍: The International Journal of Computational Fluid Dynamics publishes innovative CFD research, both fundamental and applied, with applications in a wide variety of fields. The Journal emphasizes accurate predictive tools for 3D flow analysis and design, and those promoting a deeper understanding of the physics of 3D fluid motion. Relevant and innovative practical and industrial 3D applications, as well as those of an interdisciplinary nature, are encouraged.
期刊最新文献
The Method of Manufactured Solutions to Construct Flow Fields Across An Interface A New Fifth-Order Weighted Compact Nonlinear Scheme with Multi-Order Candidates Weighting for Hyperbolic Conservation Laws Investigation of Blade Cascade Torsional Flutter Using the Discontinuous Galerkin Approach in Correlation with Experimental Measurements Exploring Dual Solutions and Characterisation of Viscous Dissipation Effects on MHD Flow along a Stretching Sheet with Variable Thickness: A Computational Approach Analysis of Slip Effects on the Stability and Interactions of Mach 5 Flat-Plate Boundary-Layer Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1