结合到达分类和速度模型建立使用期望最大化

Cericia Martinez, J. Gunning, Juerg Hauser
{"title":"结合到达分类和速度模型建立使用期望最大化","authors":"Cericia Martinez, J. Gunning, Juerg Hauser","doi":"10.1080/22020586.2019.12073105","DOIUrl":null,"url":null,"abstract":"Summary Probabilistic inversions of wide angle reflection and refraction data for crustal velocity models are regularly employed to understand the robustness of velocity models that can be inferred from these data. It is well understood that the uncertainties associated with the picks of individual arrivals contribute to overall model uncertainty. Typically only a modicum of effort is devoted to quantifying uncertainty in the traveltime picks; a constant noise estimate is commonly assigned to a given class of arrivals. Further, determining the class of arrivals is often left to the behest of the interpreter, contributing additional uncertainty to the data that is both difficult to quantify and may be altogether incorrect. Given the crucial role data uncertainty plays in characterising model robustness, there is a need to thoroughly and appropriately quantify uncertainty in the traveltime data which itself is inferred from the waveform. Here we propose a method that treats arrival or phase classification as part of the velocity model building (inversion) framework using the well-established expectation-maximization (EM) algorithm.","PeriodicalId":8502,"journal":{"name":"ASEG Extended Abstracts","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining arrival classification and velocity model building using expectation-maximization\",\"authors\":\"Cericia Martinez, J. Gunning, Juerg Hauser\",\"doi\":\"10.1080/22020586.2019.12073105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Probabilistic inversions of wide angle reflection and refraction data for crustal velocity models are regularly employed to understand the robustness of velocity models that can be inferred from these data. It is well understood that the uncertainties associated with the picks of individual arrivals contribute to overall model uncertainty. Typically only a modicum of effort is devoted to quantifying uncertainty in the traveltime picks; a constant noise estimate is commonly assigned to a given class of arrivals. Further, determining the class of arrivals is often left to the behest of the interpreter, contributing additional uncertainty to the data that is both difficult to quantify and may be altogether incorrect. Given the crucial role data uncertainty plays in characterising model robustness, there is a need to thoroughly and appropriately quantify uncertainty in the traveltime data which itself is inferred from the waveform. Here we propose a method that treats arrival or phase classification as part of the velocity model building (inversion) framework using the well-established expectation-maximization (EM) algorithm.\",\"PeriodicalId\":8502,\"journal\":{\"name\":\"ASEG Extended Abstracts\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASEG Extended Abstracts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/22020586.2019.12073105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEG Extended Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/22020586.2019.12073105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地壳速度模型的广角反射和折射数据的概率反演通常用于了解从这些数据推断出的速度模型的鲁棒性。众所周知,与个别到达点的选择有关的不确定性导致了整个模型的不确定性。通常,只有很少的努力用于量化旅行时间选择的不确定性;一个恒定的噪声估计值通常被分配给给定的到达级别。此外,确定到达者的类别通常由口译员来决定,这给数据带来了额外的不确定性,这些数据既难以量化,也可能完全不正确。考虑到数据不确定性在表征模型鲁棒性方面所起的关键作用,有必要彻底和适当地量化从波形中推断出的走时数据中的不确定性。在这里,我们提出了一种方法,将到达或相位分类作为速度模型构建(反演)框架的一部分,使用完善的期望最大化(EM)算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining arrival classification and velocity model building using expectation-maximization
Summary Probabilistic inversions of wide angle reflection and refraction data for crustal velocity models are regularly employed to understand the robustness of velocity models that can be inferred from these data. It is well understood that the uncertainties associated with the picks of individual arrivals contribute to overall model uncertainty. Typically only a modicum of effort is devoted to quantifying uncertainty in the traveltime picks; a constant noise estimate is commonly assigned to a given class of arrivals. Further, determining the class of arrivals is often left to the behest of the interpreter, contributing additional uncertainty to the data that is both difficult to quantify and may be altogether incorrect. Given the crucial role data uncertainty plays in characterising model robustness, there is a need to thoroughly and appropriately quantify uncertainty in the traveltime data which itself is inferred from the waveform. Here we propose a method that treats arrival or phase classification as part of the velocity model building (inversion) framework using the well-established expectation-maximization (EM) algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Forrestania and Nepean electromagnetic test ranges, Western Australia – a comparison of airborne systems Smart stitching: adding lateral priors to ensemble inversions as a post-processing step X-ray computerised tomography for fracture and facies characterisation and slab orientation in cores stored within aluminium tubes Geophysical characterization of the remanent anomaly in the Paleo/Mesoproteozoic Araí Intracontinental Rift, Brazil Viability of long-short term memory neural networks for seismic refraction first break detection – a preliminary study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1