局域陷阱能量对不同辐射陷阱能级下硝酸镓(GaN)化合物半导体光致发光强度的影响

Getu Endale
{"title":"局域陷阱能量对不同辐射陷阱能级下硝酸镓(GaN)化合物半导体光致发光强度的影响","authors":"Getu Endale","doi":"10.13189/UJPA.2019.130402","DOIUrl":null,"url":null,"abstract":"In this paper, we model effects of localized trap energy on the photoluminescence at different radiative trap level. Wherever possible, the concepts are augmented with data, with particular emphasis in the case of Gallium nitrate. By using illumination and lifetime, the intensity of light in each band is determined by assuming one incident photon ejects one electron at a time. From this at different temperature, illumination, doping concentration and impurity densities of states the intensities of light vary for all radiative recombination mechanisms. By varying illumination and impurity densities of states at room temperature, the dominated radiative recombination mechanisms are studied from the three radiative recombination mechanisms. At high values of illumination, the intensity of light in band-to-band radiative recombination mechanism dominates for all values of localized trap energies. For high values of impurity trap density, only the intensity of light in conduction band to trap level radiative recombination mechanisms dominates for all localized trap energies.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effects of Localized Trap Energy on the Photoluminescence Intensity of Gallium Nitrate (GaN) Compound Semiconductor for Different Radiative Trap Level\",\"authors\":\"Getu Endale\",\"doi\":\"10.13189/UJPA.2019.130402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we model effects of localized trap energy on the photoluminescence at different radiative trap level. Wherever possible, the concepts are augmented with data, with particular emphasis in the case of Gallium nitrate. By using illumination and lifetime, the intensity of light in each band is determined by assuming one incident photon ejects one electron at a time. From this at different temperature, illumination, doping concentration and impurity densities of states the intensities of light vary for all radiative recombination mechanisms. By varying illumination and impurity densities of states at room temperature, the dominated radiative recombination mechanisms are studied from the three radiative recombination mechanisms. At high values of illumination, the intensity of light in band-to-band radiative recombination mechanism dominates for all values of localized trap energies. For high values of impurity trap density, only the intensity of light in conduction band to trap level radiative recombination mechanisms dominates for all localized trap energies.\",\"PeriodicalId\":23443,\"journal\":{\"name\":\"Universal Journal of Physics and Application\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal Journal of Physics and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13189/UJPA.2019.130402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Physics and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/UJPA.2019.130402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了局域阱能量对不同辐射阱能级下光致发光的影响模型。只要有可能,就用数据扩充概念,特别强调硝酸镓的情况。通过使用照度和寿命,每个波段的光强度是通过假设一个入射光子一次发射一个电子来确定的。由此可见,在不同温度、光照、掺杂浓度和杂质密度的状态下,所有辐射复合机制的光强都是不同的。通过改变室温下的光照和杂质密度,从三种辐射复合机制中研究了占主导地位的辐射复合机制。在高照度下,带对带辐射复合机制中的光强度在局域捕获能的所有值中占主导地位。对于高杂质阱密度值,只有导带的光强度到阱能级的辐射复合机制在所有局域阱能量中占主导地位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effects of Localized Trap Energy on the Photoluminescence Intensity of Gallium Nitrate (GaN) Compound Semiconductor for Different Radiative Trap Level
In this paper, we model effects of localized trap energy on the photoluminescence at different radiative trap level. Wherever possible, the concepts are augmented with data, with particular emphasis in the case of Gallium nitrate. By using illumination and lifetime, the intensity of light in each band is determined by assuming one incident photon ejects one electron at a time. From this at different temperature, illumination, doping concentration and impurity densities of states the intensities of light vary for all radiative recombination mechanisms. By varying illumination and impurity densities of states at room temperature, the dominated radiative recombination mechanisms are studied from the three radiative recombination mechanisms. At high values of illumination, the intensity of light in band-to-band radiative recombination mechanism dominates for all values of localized trap energies. For high values of impurity trap density, only the intensity of light in conduction band to trap level radiative recombination mechanisms dominates for all localized trap energies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Disk of Concave Mirrors: An Experiment of the Light with Contradictory Formulas The NOW of time and the Pioneer Anomaly Tachyons, the Four-Momentum Formalism and Simultaneity Killing Vector Fields and Conserved Currents on Rotationally Symmetric Space-time Discovery of Ambiguity in the Traditional Norms of Specifying Physical Quantities along the Axes of Coordinates in Drawing Data Based Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1